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INTRODUCCIÓN 

La filosofía analítica se ha distinguido históricamente 
por su uso de herramientas lógicas. Por esta razón, encontramos 
cursos de lógica en cualquier carrera de Filosofía a lo largo del 
mundo. Incluso la epistemología analítica tradicional, que se ha 
preocupado fundamentalmente por preguntas conceptuales como 
la naturaleza del conocimiento y de la justificación, suele utilizar 
la Lógica como herramienta. 

En contraste con la epistemología analítica tradicional, 
la epistemología formal nos propone responder preguntas de 
epistemología utilizando herramientas matemáticas más varia-
das, tales como probabilidades, teoría de la decisión, teoría de 
juegos, o teoría de la elección social. Muchas de estas áreas fue-
ron discutidas por filósofos provenientes de la filosofía de las 
ciencias, la filosofía política o la ética. Por ejemplo, uno podría 
preguntarse por el valor de la estadística para la explicación cien-
tífica; o por la importancia de la teoría de juegos para entender 
el origen del concepto de justicia; o por el valor del Teorema de 
Arrow para establecer límites a los sistemas políticos conocidos. 

La epistemología formal, entonces, es un término muy 
general que engloba distintas áreas de conocimiento que han sido 
aplicadas en distintos debates, pero que (a diferencia de la Ló-
gica) no suelen formar parte de la formación básica de un filó-
sofo. El propósito de este libro es justamente ayudar a remediar 
esa situación, dentro del área hispanohablante. Este libro nos pro-
pone una introducción general a las distintas áreas centrales de 
la epistemología formal para filósofos, de forma accesible y a la 
vez sólida. 

En primer lugar, este libro no presupone un nivel elevado 
de matemáticas. Esto no significa que su lectura sea fácil: algu-
nas demostraciones son largas y complejas. El único conoci-
miento requerido es un buen manejo de operaciones algebraicas 
(saber multiplicar fracciones, dividir, trabajar ecuaciones e 
inecuaciones, etc.) y haber aprobado un curso básico de lógica. 
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Las secciones o los ejercicios que requieren más destreza mate-
mática o lógica están marcados con un *. 

En segundo lugar, este libro no está orientado necesaria-
mente a estudiantes especializados, sino a estudiantes con sufi-
ciente interés en el tema. De este modo, puede usarse como libro 
de referencia para personas interesadas más indirectamente en 
estos temas que quieran utilizar ideas de teoría de juegos, teoría 
de la decisión o teoría de la elección social en sus áreas de tra-
bajo, pero no sepan por dónde empezar. 

Por último, este no es un libro “de divulgación”, que ex-
pondría ideas complejas en un vocabulario sencillo pero sin en-
trar en grandes detalles. Por el contrario, este libro es un manual: 
expone ideas relativamente sencillas con suficiente detalle para 
entender los conceptos y métodos, y propone ejercicios a los lec-
tores. Solucionar los ejercicios en cada sección dará a los lectores 
un conocimiento más sólido sobre estos temas. 

El primer capítulo del libro trata sobre el concepto de 
probabilidad. En la primera parte se explican los principios bá-
sicos de las probabilidades y la regla de Bayes para la condicio-
nalización. Luego entramos en detalles más filosóficos, como las 
interpretaciones del concepto de probabilidad, la relación entre 
probabilidad y validez lógica y los distintos resultados para esta-
blecer que cumplir las leyes probabilísticas es propiamente ra-
cional. Al final, se introducen algunos conceptos generales sobre 
estadística, en particular para su aplicación en el testeo de hipó-
tesis científicas. 

El segundo capítulo del libro trata sobre la teoría de la 
decisión. Empezamos por introducir el esquema conceptual de la 
teoría de la decisión, y la división entra acciones y estados del 
mundo. Luego discutimos brevemente la teoría de la decisión 
“bajo ignorancia”, que nos permite tomar decisiones racionales 
incluso cuando ignoramos las probabilidades de los estados del 
mundo. Más adelante se introduce la teoría de la decisión “bajo 
riesgo”, y el método de maximización de la utilidad esperada. 
La segunda parte de este capítulo se mete en las discusiones con-
ceptuales, tales como la naturaleza de la utilidad según la teoría 
de la decisión, y las distintas objeciones o paradojas que se han 
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presentado contra el principio de maximización de utilidad. Ha-
cia el final, introducimos algunas teorías contemporáneas (pos-
teriores al 2010), tales como las experiencias transformadoras de 
L. A. Paul y la decisión basada en riesgos de L. Buchak. 

El tercer capítulo trata sobre la teoría de juegos. Aquí, 
empezamos por distinguir entre juegos estratégicos y dinámicos. 
Primero se explican algunos métodos de solución para los juegos 
estratégicos, tales como el método de borrado iterado de estrate-
gias dominadas, y la búsqueda de equilibrios de Nash. Luego se 
introduce el método de inducción hacia atrás para los juegos di-
námicos, usando árboles de decisión. Más adelante, discutimos 
el concepto de Cooperación a partir del Dilema del Prisionero, y 
exponemos su importancia en la filosofía contemporánea. Hacia 
el final, exponemos brevemente algunos juegos de “información 
incompleta”, y mostramos cómo obtener equilibrios de Nash 
para estrategias mixtas, es decir, estrategias que utilizan algún 
tipo de procedimiento probabilístico. 

El cuarto y último capítulo trata sobre la teoría de la 
elección social. Primero se introducen algunos métodos y con-
ceptos en la clásica teoría del voto, y se explica la paradoja de 
los ciclos de Condorcet. Más adelante, se explican los conceptos 
fundamentales de la teoría contemporánea de la Elección Social, 
partiendo del concepto de “función de bienestar social”. En ese 
contexto, se introduce el teorema fundamental de esta área de 
investigación: el Teorema de Arrow. También agregamos una 
demostración sencilla del teorema, que los lectores más atentos 
pueden seguir. Luego discutimos la relevancia filosófica del 
Teorema de Arrow y las distintas lecturas que se han hecho de 
este resultado. Más adelante, introducimos resultados más “po-
sitivos” sobre el voto democrático, como el Teorema del Jurado 
de Condorcet. Por último, presentamos la teoría de agregación 
de juicios, un área muy similar a la Elección Social, pero más 
centrada en las relaciones lógicas entre las proposiciones. 

El propósito de este libro, entonces, es introducir a los 
lectores en los métodos y los conceptos fundamentales de la epis-
temología formal. Incluso para aquellos que no se dediquen es-
pecíficamente a estos temas, el libro les servirá para aprender 
nuevas herramientas técnicas y conceptuales que podrán aplicar 
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en sus futuras investigaciones. Aunque la matemática y la filo-
sofía son cosas bien distintas, la filosofía puede sacar mucho pro-
vecho de los métodos formales para su propósito de clarificar y 
desarrollar conceptos. 

Para terminar, quiero agradecer a Eleonora Cresto, con 
quien trabajo desde hace más de diez años, y que me acompañó 
en el aprendizaje de todos los temas que trato en el libro. Le agra-
dezco especialmente por haber leído y comentado el manuscrito 
del libro. También agradezco a Javier Arróspide por sus comen-
tarios sobre el capítulo 1, a mi editor Mariano Blatt, y a Juan 
Redmond por su trabajo sobre una versión anterior del texto. 

Diego Tajer 
Instituto de Investigaciones Filosóficas 

CONICET, Argentina 
diegotajer@gmail.com 
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CAPÍTULO 1: PROBABILIDADES 
 

Parte A. Axiomas y principios 
 
Muchas de las teorías que explicaremos en este libro presuponen, 
de algún u otro modo, la teoría clásica sobre la probabilidad. La 
probabilidad aparece en nuestro razonamiento cotidiano, a veces 
de forma explícita. Por ejemplo, mi celular indica que la proba-
bilidad de lluvia hoy en Buenos Aires es del 65 %. Sé, al menos, 
que la lluvia es bastante probable. 
¿Pero en qué consiste la probabilidad? En términos generales, la 
probabilidad es una función que asigna un número a los eventos 
posibles. Este número será mayor en tanto la probabilidad de que 
el evento ocurra sea más alta. En el contexto de las teorías de la 
racionalidad, entendemos usualmente a la probabilidad de forma 
subjetiva: lo que importa realmente no es la probabilidad del he-
cho en sí, sino la probabilidad que le asigna un agente, y qué es 
lo que ese agente hace a partir de ello. Sin embargo, en otros 
contextos, podemos entender las probabilidades como un hecho 
objetivo. 
Empecemos por lo básico. Llamamos espacio muestral al con-
junto de posibles resultados de un experimento. En fenómenos 
aleatorios (como tirar un dado o una moneda), estos eventos pue-
den ocurrir con la misma probabilidad. Por ejemplo, si tiramos 
un dado, el espacio muestral será {1, 2, 3, 4, 5, 6}. La probabili-
dad de un evento E en estos contextos aleatorios podría calcu-
larse de este modo, conocido como Regla de Laplace: 
 

P(E) = 
Número de casos donde sucede E

Número de casos posibles
 

 
Por ejemplo, la probabilidad de sacar un número par al tirar un 
dado será ½, porque hay 6 casos posibles, y solo 3 casos de nú-
meros pares (2, 4 y 6).  
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Los espacios muestrales podrían ser mucho más grandes. Por 
ejemplo, si tiro el dado dos veces, ya no tendré un espacio mues-
tral de 6 elementos, sino uno de 36: {(1,1), (1,2), (1,3), …, (2,1), 
(2,2), (2,3), ...}. Allí se indica lo que sale en la primera tirada y 
también lo que sale en la segunda. De este modo, por ejemplo, la 
probabilidad de sacar primero un número y luego su doble es 
3/36 = 1/12, porque entre los 36 posibles los resultados los únicos 
donde eso sucede son (1,2), (2,4) y (3,6). 
Las probabilidades cumplen con algunos axiomas, es decir, prin-
cipios fundamentales. Estos principios suelen llamarse Axiomas 
de Kolmogórov, porque fueron establecidos por el matemático 
ruso Andréi Kolmogórov en 1933 (aunque la versión original es 
ligeramente distinta a la presentada aquí).1 
Vamos a suponer que A es una proposición y que P(x) es la fun-
ción de probabilidad. El primer axioma dice que la probabilidad 
de una proposición es un número real entre 0 y 1. Este axioma 
suele llamarse Normalidad.2 
 

Axioma 1 (Normalidad):  0 ≤ P(A) ≤ 1 
 
Es decir, lo menos probable tendrá probabilidad 0, y lo más pro-
bable tendrá probabilidad 1. Si entendemos la probabilidad como 
un cociente entre casos donde sucede el evento y todos los casos 
posibles, es natural pensar que una probabilidad estará entre 0 
(no se da en ningún caso) y 1 (se da en todos los casos). 
Los otros axiomas involucran, de algún u otro modo, cuestiones 
lógicas. En primer lugar, la probabilidad de las tautologías debe 
ser 1. Este axioma suele llamarse Certeza. 
 

 
1 En la presentación original de Kolmogórov, la función de probabili-
dad se aplica a eventos, no a proposiciones. Aquí usaremos ambos en-
foques de forma equivalente. Después de todo, suele asumirse que una 
proposición es un conjunto de mundos posibles (y un evento también, 
como veremos en la Parte D). 
2 Los nombres para los axiomas siguen las convenciones de Hacking 
(2001, p. 61). 



 
Diego Tajer /3 

 

Axioma 2 (Certeza): Si A es una tautología3, entonces P(A) = 1. 
 
Este axioma es muy importante para las aplicaciones de la teoría 
de la probabilidad. Desde el punto de vista objetivista, es com-
pletamente obvio que las verdades lógicas ocurrirán en todos los 
casos posibles. Desde el punto de vista más subjetivista, este 
axioma es más discutible, pues asume que los agentes asignan a 
las tautologías una probabilidad máxima. En otras palabras, se 
asume que los agentes saben todo sobre lógica (en ocasiones esto 
se llama “omnisciencia lógica”). 
Es importante observar también que el axioma no es bicondicio-
nal. Es decir, si bien las tautologías tendrán siempre probabilidad 
1, podría haber otras proposiciones con probabilidad 1. Esto in-
cluye a aquellas proposiciones que son absolutamente seguras en 
un contexto determinado. 
El tercer axioma nos dice que, si dos proposiciones son incom-
patibles entre sí, entonces la probabilidad de su disyunción será 
simplemente la suma de las probabilidades. Llamamos a este 
axioma Aditividad. 
 

Axioma 3 (Aditividad): Si A y B son incompatibles entre sí, es 
decir {A, B} ⊢	⊥, entonces P(A ∨ B) = P(A) + P(B). 

 
Tal como sucede con el axioma anterior, aquí la incompatibilidad 
no será siempre lógica; basta que dos eventos no puedan ocurrir 
al mismo tiempo para que sean incompatibles.  
Un caso obvio que puede inferirse a partir de estos axiomas es lo 
que sucede con las proposiciones y sus negaciones. Si la proba-
bilidad de A es p, la probabilidad de ¬A será (1 - p). Es decir, si 
la probabilidad de que llueva es 0.65, la probabilidad de que no 
llueva es 0.35. Podemos ver ahora la prueba de este teorema:  

 
3 Este libro presupone ciertos conocimientos de Lógica, en particular 
de lógica proposicional clásica. A lo largo del libro, esencialmente uti-
lizaré tres conectivos: ¬A es la negación de A; por otro lado, A ∨ B es 
la disyunción entre A y B; finalmente, A & B es la conjunción entre A 
y B. Una tautología es una oración necesariamente verdadera en virtud 
de su forma lógica, como p ∨ ¬p. 
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Teorema (Negación): P(¬A) = 1 - P(A). 
 

Prueba. P(A ∨ ¬A) = 1, por Certeza. 
P(A ∨ ¬A) = P(A) + P(¬A), por Aditividad. 
Entonces P(A) + P(¬A) = 1.  
Por lo tanto, P(¬A) = 1 - P(A).  QED 
 

De este teorema también se infiere, casi automáticamente, que la 
probabilidad de las contradicciones siempre será 0 (véase Ejer-
cicios). 
También podemos probar un principio sobre la equivalencia ló-
gica, que usaremos repetidamente más adelante4: 
 

Teorema (Equivalencia): 
Si A y B son lógicamente equivalentes, P(A) = P(B). 
 
Prueba. Supongamos que A y B son lógicamente equivalentes. 
Dado que A y ¬A son incompatibles, y que A y B son lógica-
mente equivalentes, entonces A y ¬B son incompatibles (por 
sustitución de equivalentes). Entonces Aditividad implica que 
P(A ∨ ¬B) = P(A) + P(¬B).  
Por la equivalencia entre A y B, A ∨ ¬B es una tautología, 
entonces P(A ∨ ¬B) = 1, por Certeza.  
Entonces P(A) + P(¬B) = 1.  
También sabemos por el Teorema de Negación que P(B) + 
P(¬B) = 1. Entonces P(B) + P(¬B) = P(A) + P(¬B), y simpli-
ficando idénticos obtenemos P(B) = P(A).  QED 

 
Un importante teorema que usaremos luego (especialmente en la 
parte C de este capítulo) nos permite inferir la probabilidad de A 
a partir de la probabilidad de A&B y de A&¬B. 
  

Teorema (Probabilidad Total): 
P(A) = P(A&B) + P(A&¬B)  
 

 
4 Las pruebas de los siguientes teoremas son relativamente complejas. 
El lector sin mucha habilidad en lógica puede saltearlas y quedarse con 
el enunciado de los teoremas. 
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Prueba. En lógica clásica, A ≡ ((A&B) ∨ (A&¬B)), por la ley 
de Tercero Excluido. Entonces P(A) = P((A&B) ∨ (A&¬B)), 
por Equivalencia. Dado que A&B y A&¬B son incompatibles, 
P((A & B) ∨ (A & ¬B)) = P(A&B) + P(A&¬B), por Aditivi-
dad. Entonces P(A) = P(A&B) + P(A&¬B).  QED 

A partir de estos principios, podemos probar dos teoremas im-
portantes. El primero relaciona Validez y Lógica (un tema que 
profundizaremos en la parte E): 

Teorema (Validez):  
Si A implica lógicamente B, entonces P(A) ≤ P(B). 

Prueba. Si A implica lógicamente B, entonces A ≡ A&B. 
P(B)   = P(B&A) +	P(B&¬A) [Probabilidad Total] 

= P(A) + P(B&¬A) [Equivalencia] 
Dado que P(B&¬A) es mayor o igual a 0 (por Normalidad), se 
infiere que P(A) ≤ P(B).       QED 

En segundo lugar, podemos inferir también un importante teo-
rema sobre la probabilidad de las disyunciones: 

Teorema (Probabilidad de Disyunciones): 
P(A ∨	B) = P(A) + P(B) - P(A & B) 

Prueba.  
P(A) + P(B) =  
= P(A&B) + P(A&¬B) + P(A&B) + P(¬A&B)  Pr. Total 
= P(A&B) + P [(A&¬B) ∨ (A&B) ∨ (¬A&B)]   Aditiv.5 
= P(A&B) + P(A∨B) Equiv. 
Por ende, P(A) + P(B) = P(A & B) + P(A ∨	B). 
Si cambiamos los términos, obtenemos: 
P(A ∨	B) = P(A) + P(B) - P(A & B). QED 

La probabilidad de las disyunciones es una típica fuente de error. 
Por ejemplo, uno pensaría que, si la probabilidad de sacar un 3 

5 Aquí usamos una Aditividad de tres proposiciones, que se sigue del 
axioma de Aditividad para dos proposiciones (omitimos la prueba). 
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en un dado es 1/6, la probabilidad de sacar un 3 si uno tira el dado 
dos veces es el doble, es decir, 2/6. Sin embargo, la probabilidad 
es un poco menos que eso. Luego veremos cómo calcularlo. 

Ejercicios 

1. Tiro dos dados.
a. ¿Cuál es la probabilidad de sacar el mismo número en ambos

dados? 
b. ¿Cuál es la probabilidad de sacar 4 en un dado y 3 en el otro?
c. ¿Qué es más probable, que ambos dados sumen 7 o que su-

men 6? ¿O es igualmente probable? 

2. Bingo con letras: Un “bingo” nos da una letra entre la A y la
E, y un número del 1 al 9, por ejemplo, B8. Antes de sacar la
bolilla, el jugador trata de adivinar si va a salir par/impar y vo-
cal/consonante. Por ejemplo, el jugador podría apostar a que sal-
drá una consonante con un número par. Si adivinas que sea vo-
cal/consonante y que sea par/impar, ganas este juego.

a. ¿Cuál es la probabilidad de ganar jugando vocal impar?
b. ¿Cuál es la probabilidad de ganar jugando consonante par?
c. ¿Cuál es la probabilidad de ganar en alguno de los dos an-

teriores? 
d. ¿Qué te conviene jugar (si puedo elegir solo una apuesta)?

¿Y qué probabilidad hay de ganar jugando eso? 

3. Pruebe (usando los teoremas o axiomas vistos en este capítulo)
que, si A es una contradicción, entonces P(A) = 0.

Parte B: Probabilidad condicional 

Otro concepto usual en probabilidad es el de probabilidad con-
dicional. A veces no queremos saber cuál es la probabilidad de 
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determinado evento, sino la probabilidad de un evento asu-
miendo que otro evento también ocurre.6 Por ejemplo, podríamos 
querer determinar la probabilidad de que la temperatura en Bue-
nos Aires exceda los 30 grados. Pero también podría interesarnos 
la probabilidad de que la ciudad supere esa temperatura asu-
miendo que es verano. Obviamente, asumiendo que es verano, la 
probabilidad será más alta. La probabilidad de que ocurra un 
evento A, asumiendo que ocurre un evento B, la escribimos 
P(A|B). En este caso, por ejemplo, P(Más de 30 grados | Verano) 
> P(Más de 30 grados). 
Una formulación sencilla de la probabilidad condicional nos dice 
lo siguiente, siempre tomando en cuenta que P(B) ≠ 0: 
 

P(A|B) = 
P(A	&	B)

P(B)
 

 
Por ejemplo, en el mazo de cartas españolas, hay 4 “palos” (es-
pada, oro, bastos y copas) y 10 números con cada uno de esos 
palos. Podríamos preguntarnos cuál es la probabilidad de sacar 
el 1 de bastos. Claramente es 1/40. Pero podríamos también pre-
guntarnos la probabilidad de sacar el 1 de bastos (1B) asumiendo 
que sacamos una carta de bastos (B). En ese caso, intuitivamente 
sabemos que es 1/10. Pero también podríamos calcularlo así: 
 

P(1B | B)  =  P(1B & B) / P(B) 
   = P(1B) / P(B)    Equivalencia7 
   = 1/40 / 1/4 

= 1/40 × 4 = 1/10 
 
De este modo vemos que el cálculo de la probabilidad condicio-
nal coincide con nuestras intuiciones al respecto. 
 

 
6 En sentido estricto, las probabilidades descritas aquí se aplican a pro-
posiciones, no a eventos. Por simplicidad, uso “evento” o “proposi-
ción” de forma equivalente a lo largo del libro. 
7 Por las propiedades de la conjunción, (1&B)&B es equivalente a 1B. 
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Es importante observar que, si movemos los términos en la defi-
nición de probabilidad condicional, nos quedará lo siguiente: 
 

P(A & B) = P(B) × P(A|B) 
 

Dado que, por equivalencia lógica, P(A&B) = P(B&A), podemos 
también inferir que: 
 

P(A & B) = P(B & A) = P(A) × P(B|A). 
 
Esta es la forma más general de calcular la probabilidad de las 
conjunciones. 
 
Independencia  
Usando el concepto de probabilidad condicional, podemos defi-
nir el concepto de independencia probabilística. Intuitivamente, 
decimos que dos eventos son independientes cuando no se influ-
yen entre sí, es decir, cuando el hecho de que uno sucede no cam-
bia la probabilidad del otro. En términos formales, necesitamos 
el concepto de probabilidad condicional: 
 

(Independencia) Dos eventos A y B son independientes si y 
sólo si P(A) = P(A|B). 
 

De aquí se sigue el teorema de Probabilidad de Conjunciones: 
 

Teorema (Probabilidad de Conjunciones): Si A y B son dos 
eventos independientes, entonces P(A & B) = P(A) × P(B). 
 
Prueba: Sabemos que P(A & B) = P(A) × P(B|A), por la defi-
nición de Probabilidad Condicional. Pero dado que A y B son 
independientes, P(B|A) = P(B). Entonces P(A & B) = P(A) × 
P(B).          QED 

 
En otras palabras, la probabilidad de eventos independientes se 
multiplica. La probabilidad de que una moneda salga “cara” dos 
veces seguidas será 0.5 × 0.5 = 0.25. Esta regla nos permite cal-
cular probabilidades un poco más complejas. 
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Por ejemplo, supongamos que tiro dos veces un dado. Podría 
querer calcular la probabilidad de sacar primero un número par, 
y luego un número mayor que 2. La probabilidad será P(Par en 
primera tirada & {3,4,5,6} en segunda tirada) = P(Par en primera 
tirada) × P({3,4,5,6} en segunda tirada) = ½ × ⅔ = ⅓. 
Con el teorema sobre la probabilidad de conjunciones, podemos 
calcular la probabilidad disyuntiva mencionada en la sección an-
terior. Decíamos que la probabilidad de sacar un 3 en una tirada 
de dado es 1/6. Pero la probabilidad de sacar un 3 en alguna de 
dos tiradas no es el doble. Es un poco menos que el doble. Pode-
mos calcular la probabilidad exacta, usando el principio de pro-
babilidad de la disyunción: 
 
P(3 en primera tirada ∨ 3 en segunda tirada) =  
P(3 en primera tirada) + P(3 en segunda tirada) - P(3 en ambas tiradas) 
= 1/6 + 1/6 - (1/6 × 1/6) = 6/36 + 6/36 - 1/36 = 11/36 
 
Hay instancias mucho más intuitivas de esta idea. Por ejemplo, 
la probabilidad de sacar al menos una “cara” tirando dos veces 
una moneda va a ser 0.75 (tenemos tres probabilidades sobre cua-
tro). Esto puede inferirse con la misma fórmula, porque P(Cara 
en 1 ∨ Cara en 2) = P(Cara en 1) + P(Cara en 2) - P(Dos veces 
cara) = 0.5 + 0.5 - 0.25 = 0.75. 
La independencia probabilística no siempre es percibida como 
tal. Por ejemplo, si vamos a un casino veremos personas usando 
el siguiente razonamiento: “En las últimas tres rondas de la ruleta 
salió Rojo, entonces en la próxima ya debería salir Negro”. Lla-
mamos a este tipo de falacia “Falacia del Apostador”. Este es un 
tipo de razonamiento muy usual, pero falaz, donde percibimos 
probabilidades independientes como si no lo fueran. Para la teo-
ría de la probabilidad, el hecho de que haya salido tres veces Rojo 
no indica que la próxima vaya a salir Negro, o que sea más pro-
bable que eso suceda. Son hechos probabilísticamente indepen-
dientes. 
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Ejercicios 
 
1. Tengo un mazo de cartas españolas. Es decir, hay 40 cartas y 
4 “palos” (espada, copa, oro y bastos), y cada uno de ellos tiene 
diez números (1, 2, 3, 4, 5, 6, 7, 10, 11 y 12). 
    a. ¿Cuál es la probabilidad de sacar un 7 dos veces seguidas, 
con reemplazo? (es decir, sacar un 7, volver a poner la carta, 
mezclar y volver a sacar un 7) 
    b. ¿Cuál es la probabilidad de sacar un 7 dos veces seguidas, 
sin reemplazo? 
    c. ¿Cuál es la probabilidad de sacar dos cartas (con reemplazo) 
de las cuales ninguna es de espada? ¿Y sin reemplazo? 
    d. *¿Cuál es la probabilidad de sacar un 7 en alguna de dos 
tiradas (con reemplazo)? 
 
2. 10% de los habitantes de Buenos Aires viven en el barrio de 
Palermo. De los habitantes de Palermo, 40% da positivo a una 
prueba de toxicidad en la piel (por contaminantes de desechos 
químicos). De los habitantes de Buenos Aires que no están en 
Palermo, solo 10% da positivo la prueba de toxicidad en la piel.  
    a. ¿Cuál es la probabilidad de que una persona (de Buenos Ai-
res), elegida al azar, viva en Palermo y dé positivo a la prueba? 
    b. ¿Cuál es la probabilidad de que una persona (de Buenos Ai-
res), elegida al azar, de positivo la prueba? [Usar probabilidad 
total] 
    c. ¿Cuál es la probabilidad de que una persona (de Buenos Ai-
res), elegida al azar, que da positivo la prueba, viva en Palermo? 
[Usar probabilidad condicional] 
    d. *Viene al hospital el hermano de esa persona, que vive en 
el mismo barrio. Le hacen la prueba y también da positivo. ¿Cuál 
es ahora la probabilidad de que ambos sean de Palermo?  

Parte C: Regla de Bayes 
 
Usando la definición probabilística de la conjunción, podemos 
reformular la probabilidad condicional, y expresar lo que usual-
mente se conoce como regla de Bayes: 
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P(A|B) = 
P(B|A)	×	P(A)

P(B)

La regla de Bayes, llamada así por su descubridor, Thomas Ba-
yes (1702-1761), se usa en disciplinas científicas para evaluar la 
probabilidad de una hipótesis a partir de cierta evidencia. En ge-
neral, llamamos “probabilidad previa” o “prior” a P(A), y “like-
lihood” a P(B|A).8 
La idea es la siguiente. Supongamos que a la mañana de un día 
de invierno me desperté con fiebre. Entonces, empiezo a pensar 
qué podría haberme causado la fiebre. Ciertamente, si tuviera una 
enfermedad grave, seguramente me daría fiebre; por ejemplo, la 
likelihood de tener fiebre si tuviera un cáncer avanzado sería muy 
alta. Pero no tengo razones para pensar que tengo una enferme-
dad grave. Es decir, tomando en cuenta mi edad y mi estado ge-
neral de salud, la probabilidad previa de tener cáncer avanzado 
es muy baja. Pienso en otra hipótesis: me intoxiqué con comida. 
De nuevo, la likelihood de tener fiebre al intoxicarme con comida 
es alta. Sin embargo, recuerdo que anoche comí una ensalada de 
tomate, lechuga y pollo bien cocinado. Entonces, es muy impro-
bable haberme intoxicado con esa cena. Es decir, la probabilidad 
previa también es bajísima. Se me ocurre una última hipótesis: 
quizás tengo una gripe. La probabilidad previa de tener gripe en 
invierno es más alta, y si tuviera gripe también tendría fiebre (es 
decir, la likelihood de tener fiebre dado que tengo gripe también 
es alta). Por eso, la probabilidad de tener gripe en invierno, asu-
miendo que tengo fiebre, es bastante alta. 
Usando la regla de Bayes, podríamos representar la situación de 
este modo. Tengo fiebre, y quiero calcular la probabilidad de te-
ner gripe: 

P(Gripe | Fiebre) = 
P(Fiebre	|	Gripe)	×	P(Gripe)

P(Fiebre)

8 No hay una buena traducción de likelihood al español, por lo cual 
dejamos esa palabra en inglés. 
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El problema ahora es que no tengo cómo establecer la probabili-
dad de la evidencia por sí sola (es decir, en este caso, la probabi-
lidad de tener fiebre). Ahora supongamos (para simplificar) que, 
al tener fiebre, solo pienso en dos hipótesis: o gripe, o cáncer. En 
este contexto, son hipótesis exclusivas y excluyentes.  
Con esto, puedo volver a los principios probabilísticos antes 
mencionados (especialmente, la Probabilidad Total), y recordar 
que la probabilidad de tener fiebre es la suma entre la probabili-
dad de fiebre&cáncer y la probabilidad de fiebre&gripe (asu-
miendo que tener gripe y tener cáncer son hipótesis exhaustivas 
y excluyentes). Y el resto lo calculo usando la regla de probabi-
lidad de conjunciones. 
Es decir: 
 

P(Fiebre)  
= P(Fiebre & Cáncer) + P(Fiebre & Gripe)   
= P(Cáncer) × P(Fiebre | Cáncer) + P(Gripe) × P(Fiebre | Gripe) 

 
En otras palabras: la probabilidad de la evidencia (tener fiebre) 
es la suma de los priors por likelihoods de cada hipótesis, siem-
pre y cuando estas hipótesis sean exhaustivas y excluyentes. 
Si asumimos que H1 y H2 son hipótesis exhaustivas y excluyen-
tes, llegamos a otra versión muy conocida de la regla de Bayes, 
que establece la probabilidad de una hipótesis H1 sobre la base 
de la evidencia e: 
 

P(H1|e) = 
P(e|H1) × P(H1) 

	P(e|H1) × P(H1) + P(e|H2) × P(H2)
 

 
En esta versión, el denominador tiene la probabilidad previa y el 
likelihood de todas las hipótesis alternativas, asumiendo que son 
exhaustivas y excluyentes.  
En el ejemplo en cuestión, la ecuación quedaría de este modo: 
 
P(Gripe | Fiebre) = 

 

 
P(Fiebre	|	Gripe) × P(Gripe)	

	P(Fiebre	|	Gripe) × P(Gripe) + P(Fiebre	|	Cáncer) × P(Cáncer)
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Asumiendo que los likelihoods son parecidos, (Gripe | Fiebre) 
será mucho mayor a P(Cáncer | Fiebre) porque la probabilidad 
previa de tener gripe en invierno, P(Gripe), es mucho mayor a la 
de tener cáncer, P(Cáncer). Justamente, las personas que se atri-
buyen la peor enfermedad ante el mínimo síntoma, los hipocon-
dríacos, cometen esta falacia: ignoran la probabilidad previa de 
las hipótesis. Esta falacia se conoce como falacia de tasa base 
(base rate fallacy). 
 
La regla de Bayes puede generalizarse para más de dos hipótesis, 
asumiendo también que son exhaustivas y excluyentes. En ese 
caso, extendemos esta definición del siguiente modo: 
 

P(H1|e) = 
P(e|H1) × P(H1) 

	∑ P(e|Hi) × P(Hi)n
i = 1 	

 

 
Es decir, el denominador será la suma de probabilidad previa por 
likelihood de todas las hipótesis. 
 
Ejemplo. En mayo de 2020 en Buenos Aires, me despierto con 
una fuerte tos. Interpreto que puede ser COVID o una gripe es-
tacional; seguro tengo alguna de las dos cosas. En este momento, 
la probabilidad de tener COVID es 0.001, mientras que la proba-
bilidad de tener una gripe estacional es 0.002. Por otro lado, la 
gripe estacional provoca tos en 50% de los casos, mientras que 
el COVID provoca tos en 80% de los casos. Entonces, ¿cuál es 
la probabilidad de tener COVID? 
 

P(Covid | Tos) = 
 

P(Tos | Covid) × P(Covid)	
P(Tos | Covid) × P(Covid) + P(Tos | Gripe) × P(Gripe)	 

 
= 0.8 × 0.001

0.8 × 0.001 + 0.5 × 0.002
  = 0.0008

(0.0008 + 0.001)
  = 0.0008

0.0018
 = 0.44 
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Es decir, la probabilidad de tener COVID será 0.44. Como son 
probabilidades excluyentes y exhaustivas, la probabilidad de te-
ner gripe estacional será 0.56. 
Usando la regla de Bayes, podemos aprender a actualizar nues-
tras creencias a partir de nueva evidencia. Lo interesante también 
es que la probabilidad actualizada pasa a ser probabilidad “vieja” 
cuando aparece nueva evidencia. La actualización puede plan-
tearse como un proceso diacrónico, donde mientras va apare-
ciendo evidencia, vamos actualizando nuestras creencias.  
Un problema típico del bayesianismo como teoría del conoci-
miento es la imposibilidad de establecer “probabilidades pre-
vias” en muchos casos. Esto puede ser importante, ya que una 
probabilidad previa muy alta será más resistente a evidencia con-
traria, y una muy baja será más resistente a la evidencia a favor. 
Incluso, si el prior es 1, la hipótesis no puede revisarse. En casos 
de desconocimiento, algunos proponen asignar una probabilidad 
previa matemáticamente neutra, como 0.5.  Esta estrategia se ori-
gina en el “Principio de Indiferencia” de Keynes, según el cual, 
en ausencia de evidencia, uno debería asignar probabilidades 
idénticas a todas las posibilidades en juego.  
Veamos ahora un clásico ejemplo de razonamiento bayesiano. 
Ejemplo. Supongamos que tengo una urna frente a mí, y sé que 
hay dos posibilidades: o bien la urna tiene 70 bolas rojas y 30 
negras (urna A), o bien tiene 70 negras y 30 rojas (urna B). 

  

30 rojas 
70 negras

70 rojas 
30 negras 

A B
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Naturalmente, si saco una bola roja, voy a pensar que segura-
mente sea la urna A. Y si saco dos bolas rojas, voy a tener una 
creencia más convencida de que se trata de la urna A. 
Esto lo podemos modelar perfectamente con la regla de Bayes. 
Supongamos que hasta ahora no sé cuál es la urna que tengo 
frente a mí, y no tengo ninguna pista al respecto. Usando el ya 
mencionado “Principio de Indiferencia”, le daremos una proba-
bilidad de 0.5 a la urna A, y una probabilidad de 0.5 a la urna B. 
Es decir, P(A) = 0.5 y P(B) = 0.5. Ahora supongamos que saco 
una bola, y esa bola es roja (R). ¿Cómo actualizo mis creencias? 
Usando la regla de Bayes, lo puedo hacer del siguiente modo: 

P(A | Roja) = 
P(Roja	|	A)×	P(A)

P(Roja	|	A) × P(A) + P(Roja	|	B) × P(B)
 = 

= 
0.7 × 0.5

0.7	× 0.5 + 0.3 × 0.5
 =  0.35

0.35	+	0.15
= 0.35

0.5
	= 0.7 

Es decir, usando la regla de Bayes, le terminaré atribuyendo a la 
hipótesis A la probabilidad 0.7. 
Ahora, ¿qué sucede si encuentro una nueva bola roja? Suponga-
mos, por simplicidad, que se trata de una urna “con reemplazo”, 
es decir, lo que saco lo vuelvo a poner. Ahora la probabilidad 
previa de A es 0.7, y actualizo del siguiente modo:  

P(A | Roja) = 
P(Roja	|	A) ×	P(A)

P(Roja	|	A) × P(A) + P(Roja	|	B) × P(B)
 = 

= 
0.7 × 0.7

0.7	× 0.7 + 0.3 × 0.3
=  0.49

0.49	+	0.09
= 0.49

0.58
	= 0.84 

Así podemos ver que mi creencia en que tengo frente a mí la urna 
A crece cuando saco una segunda bola roja. Esto nos permite 
modelar procesos diacrónicos de aprendizaje, donde voy actua-
lizando probabilidades, pero al mismo tiempo voy obteniendo 
evidencia nueva.  
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Ejercicios  
 
1.  
a. Pedro tiene problemas de insomnio, y se pregunta si podría 
estar causado por una depresión. Calcula la probabilidad de tener 
depresión, asumiendo que la prevalencia de depresión es 10%, el 
60% de los depresivos tienen insomnio, y entre personas sin de-
presión la prevalencia de insomnio es 20%. 
b. Pedro tiene ahora un ataque de pánico, y se preocupa más. 
Usando las probabilidades nuevas, calcula la probabilidad de que 
tenga depresión, si la prevalencia de ataques de pánico en depre-
sivos es 50%, y en no-depresivos es de 10%. (Por simplicidad, 
asumimos que al tener depresión, la probabilidad de ansiedad e 
insomnio son independientes) 
 
2. 
a. El test de HIV a los 28 días es bastante confiable: si tienes el 
virus, es 95% probable que el resultado sea Positivo; si no lo tie-
nes, es 99% probable que el resultado sea Negativo.  
Calcule la probabilidad de tener HIV luego de un testeo negativo 
a los 28 días, en caso de que uno sea un/a trabajador/a sexual, 
donde la prevalencia de HIV es 3%. 
b. El test de HIV a los 3 meses es mucho más confiable: si tienes 
el virus, es 98.5% probable que el resultado sea Positivo. Si no 
lo tienes, es 99.7% probable que el resultado sea Negativo. 
Calcule la probabilidad de tener HIV luego de un testeo positivo 
a los 3 meses, para el promedio de la población, donde la preva-
lencia de HIV es 0.4%. 

Parte D: Probabilidades y mundos posibles 
 
Hay distintas formas de representar nociones probabilísticas. La 
forma más usual es la que mencionamos en las secciones ante-
riores: usando una función sobre proposiciones. Sin embargo, y 
especialmente en los textos de filosofía, también se suelen utili-
zar mundos posibles y álgebras. La idea contemporánea de 
mundo posible, que tiene su inspiración en la obra de Leibniz del 
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siglo XVIII, se origina en la obra de Kripke (1963) y Hintikka 
(1963). De acuerdo con estos autores, un mundo posible es una 
forma en que el mundo podría ser (o podría haber sido).  
En el contexto de la epistemología, y principalmente a partir de 
la obra de Hintikka (1963), usamos los mundos posibles para ha-
blar sobre modos en que el mundo podría ser, de acuerdo con 
nuestro conocimiento. Esto suele leerse de un modo subjetivo: 
por ejemplo, si jugamos dominó, sabemos que las fichas del otro 
pueden ser cualquiera salvo las nuestras y las que ya se tiraron al 
tablero. Todas esas posibilidades aún no descartadas son “mun-
dos posibles” en este sentido puramente epistémico. 
En términos técnicos, un mundo posible es una asignación de va-
lor de verdad a todas las oraciones. En ese sentido, un mundo 
posible es equivalente a la noción de valuación en la lógica pro-
posicional. En un mundo posible, todo está determinado: los ju-
gadores de dominó tienen determinadas fichas, en Buenos Aires 
hace determinada temperatura, etc. 
Ahora podemos explicar la noción de álgebra, que es particular-
mente relevante para el cálculo de probabilidades. Un álgebra F 
sobre un conjunto W de mundos posibles es un conjunto de sub-
conjuntos de W que cumple con algunas condiciones: 
 

1. El conjunto W está en F. 
2. Si A ∈ F, entonces el A ∈ F, donde A es el complemento de 
F (relativo a W). 
3. Si A y B ∈ F, entonces A ∪ B ∈ F. 
 

En otras palabras, un álgebra sobre un conjunto de mundos posi-
bles W incluye el conjunto W, y está cerrada bajo unión y bajo 
complemento. El lector puede probar que también está cerrada 
bajo intersección. 
 
Ejemplos 
Sea W = {a, b} 
Conjunto F: {∅, W, {a}} 
Conjunto G: {∅, W} 
Conjunto H: {∅, W, {a}, {b}} 
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El conjunto H es un álgebra sobre W, porque contiene los com-
plementos y las uniones de todos los conjuntos. De hecho, H es 
idéntico al conjunto potencia de W (es decir, el conjunto de sub-
conjuntos de W). Veamos qué sucede con G. Aquí, el conjunto 
no contiene {a} ni {b}, pero cumple con los axiomas, porque 
está cerrado bajo complemento y unión. Entonces también es un 
álgebra. Ahora bien, no sucede lo mismo con el conjunto F. Por-
que el conjunto F está cerrado bajo unión, pero no bajo comple-
mento. El complemento de {a} es {b}, pero {b} no está en F. De 
modo que F no es un álgebra sobre W.  
Ahora que tenemos el concepto de “álgebra”, podemos definir 
una función de probabilidad.9 Siendo F un álgebra sobre W, y 𝝻 
una función de F en [0,1], 𝝻 es una función de probabilidad si y 
sólo si cumple con los siguientes axiomas: 
 

1.	𝝻(W) = 1 
2. Si A ∩ B = ∅, entonces 𝝻(A ∪ B) = 𝝻(A) + 𝝻(B) 

 
Podemos ver entonces la analogía entre los axiomas presentados 
en la Parte A y la descripción de una función de probabilidad. La 
Normalidad se infiere de la definición de la función 𝝻, cuya ima-
gen es el conjunto [0,1]. El primer axioma nos dice que W va a 
valer 1, y esto equivale a darle 1 a las tautologías (las oraciones 
verdaderas en todo mundo); se trata del axioma de Certeza. 
Mientras que el segundo axioma nos dice que la probabilidad de 
la unión entre dos conjuntos “incompatibles” es la suma de sus 
probabilidades por separado, y esto equivale al Axioma de Adi-
tividad. 
Por último, es importante señalar que de acuerdo con la tradición 
filosófica, podemos entender a las proposiciones como conjuntos 
de mundos posibles. Es decir, una proposición A puede enten-
derse como el conjunto de mundos posibles donde A es verda-
dera. En el contexto de las álgebras, no usamos todos los mundos 
sino un conjunto muy acotado, que elegimos según nuestros pro-
pósitos. 

 
9 Véase Halpern (2003), cap. 2. 
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Por ejemplo, supongamos que salgo de la Facultad de Filosofía 
y quiero ir al centro en bus. Mientras espero, veo un bus viniendo 
a lo lejos. Tomando en cuenta que estoy en la Avenida Rivadavia 
(una avenida muy importante de Buenos Aires), infiero que 
puede ser la línea 132 (Flores - Retiro), la 145 (Mercado Central 
- Plaza Italia) o la 8 (Liniers - Retiro). Puedo representar el con-
junto de mundos posibles de este modo:

W = {8, 145, 132} 

Supongamos que tengo un álgebra muy fina, de modo tal que 
cualquiera de esos mundos posibles pertenece a ella como con-
junto de único elemento10: 

M = {W, ∅, {8}, {145}, {132}, {145, 8}, {8, 132}, {145, 132}} 

Ahora supongamos que por un simple asunto de frecuencias (es 
decir, cuáles buses suelen pasar más seguido), esta es mi atribu-
ción de probabilidades: 

𝝻({145}) = 0.3, 𝝻({8}) = 0.2, 𝝻({132}) = 0.5 

Podemos notar dos cosas. Primero: al atribuir probabilidades a 
los conjuntos más pequeños, ya podemos inferir las probabilida-
des de todos los otros conjuntos (son simplemente las sumas). 
Segundo, que estas probabilidades deben sumar 1. 
Ahora bien, podríamos definir muchas proposiciones a partir de 
los mundos donde son verdaderas. Aquí lo leeremos en el con-
texto epistémico particular en el que nos encontramos. Por ejem-
plo: 

“El bus me lleva a la Estación de Retiro” = {8, 132} 

“El nombre del bus tiene tres cifras” = {145, 132} 

10 Cuando esto sucede, el álgebra será el conjunto potencia de W. 
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Como sabemos, dado que el conjunto de mundos es muy aco-
tado, un mismo conjunto puede expresarse de distintos modos. 
Por ejemplo, en este contexto, afirmar que el bus tiene una cifra 
equivale a decir que sale de Liniers. 
Una cuestión interesante es cómo representar en este enfoque las 
probabilidades condicionales. Afortunadamente, esto es bastante 
sencillo. En general, podemos decir (asumiendo que P(B) ≠ 0): 

P(A | B) = P(A ∩ B) / P(B) 

Por cuestiones puramente matemáticas, el resultado será siempre 
un número entre 0 y 1.  

Ejemplo. Volvamos al ejemplo anterior. Tenemos el mismo mo-
delo con las mismas atribuciones de probabilidad. Ahora veo al 
bus un poco más cerca, y noto que el cartel tiene tres números. 
¿Cuál es ahora la probabilidad de que sea el bus 145? Primero, 
debo entender cuál fue la evidencia. La evidencia en este caso, 
en este contexto específico, es {145,132}. 
Entonces la nueva probabilidad de que sea el 145 es: 

P({145} | {145, 132}) = P({145} ∩ {145, 132}) / P({145, 132}) = 

= P({145}) / P({145, 132}) = 0.3 / 0.8 = 0.375 

Ahora la probabilidad de que el bus sea el 145 pasa a ser 0.375. 

Recientemente, Leitgeb (2014) utilizó este aparato teórico para 
dar respuesta a la Paradoja de la Lotería (Kyburg 1961). Esta pa-
radoja intenta reducir al absurdo la Tesis de Locke, según la cual 
podemos creer racionalmente una proposición si su probabilidad 
es mayor a un parámetro r (supongamos, 0.8). El argumento dice 
lo siguiente: si existiera una lotería de 10 tickets, la chance de 
que no salga cada uno es 0.9. Entonces, por la Tesis de Locke, 
debo creer “No va a salir el ticket 1”, “No va a salir el ticket 2”, 
etc. Pero también debo creer que “Va a salir algún ticket” (cuya 
probabilidad es 1). Esto me lleva a una inconsistencia.  
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La respuesta de Leitgeb es que las proposiciones creíbles racio-
nalmente no requieren solo probabilidad alta sino también esta-
bilidad. Esto significa que resisten bien a la información nueva. 
Formalmente, una proposición A es estable si y sólo si P(A) > 
0.5, y además P(A|B) > 0.5 para toda proposición B del álgebra 
compatible con A, es decir, A ∩ B ≠ ∅. En el contexto de la lo-
tería, no es estable creer que “No va a salir el ticket 1”, es decir 
{2, 3, 4, 5, 6, 7, 8, 9, 10}, porque condicionalizado bajo “salieron 
el 1 o el 2”, es decir {1, 2}, nos arroja P({2}) / P({1, 2}) = 0.5. 
La única proposición estable es que “Va a salir algún ticket”. 
 
Ejercicio 
 
1. En el escenario anterior, veo de lejos un bus que dice que va a 
Retiro. Calcule la probabilidad de que sea la línea 8. 
2. Pruebe que {132, 145} es una proposición estable. 

Parte E: Probabilidad y Lógica 
 
¿Cuál es la relación entre la lógica y la probabilidad? Como vi-
mos, los axiomas de Kolmogórov establecen algunas relaciones: 
las tautologías tendrán probabilidad 1, y si A implica B, entonces 
P(A) ≤ P(B). Sin embargo, las inferencias válidas suelen tener 
más de una premisa. Una buena pregunta es qué podemos inferir 
sobre la relación entre lógica y probabilidad en esos casos. 
Uno de los resultados más conocidos se lo debemos a Ernest 
Adams. En su libro A primer on Probability Logic (1998), prueba 
una importante inecuación: 
 
Ley de Adams:    Si A1, …, An implican lógicamente B, entonces 
                              P(A1) + … + P(An) - (n - 1) ≤ P(B) 
 
La idea de Adams es que, si sumamos la ‘incerteza’ de las pre-
misas, esta suma debe ser mayor a la ‘incerteza’ de la conclusión. 
Por ejemplo, si A, B implican C, y P(A) = 0.8, y P(B) = 0.9, la 
suma de incertezas es 0.3, de modo tal que la incerteza de C debe 
ser a lo sumo 0.3, es decir, la probabilidad de C debe ser como 
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mínimo 0.7. Si la probabilidad de C fuera 0.6, la incerteza sería 
0.4, y no se cumpliría esa inecuación. 
Es fácil ver que el Teorema de Validez para argumentos con una 
sola premisa es una instancia de este principio, donde n = 1. Por 
otro lado, también podemos ver que, si el argumento es válido y 
la probabilidad de las premisas es 1, la conclusión debe también 
tener probabilidad 1. La Ley de Adams se infiere de los axiomas 
de Kolmogórov (Adams 1998, p. 32). 
Resultados como el de Adams son importantes para la filosofía 
porque establecen los paralelos posibles entre la probabilidad y 
la lógica. Además, nos sirven para comprender determinados es-
cenarios epistémicos. 
Un famoso escenario es conocido como Paradoja del Prefacio. 
En este escenario, una profesora escribe un libro de historia luego 
de años de investigación. En el prefacio, sin embargo, dice: 
“como la historia es una ciencia empírica, este libro contiene 
errores, de los que me hago totalmente responsable”. La profe-
sora admite que el libro contiene algunos errores. Al mismo 
tiempo, si le preguntan, ella cree cada oración del libro indivi-
dualmente. Es decir, la profesora cree A1, …, An, para todas las 
oraciones Ai del libro, y a la vez cree ¬(A1 & … & An). Según 
Makinson (1965), este caso muestra que podemos ser inconsis-
tentes y racionales al mismo tiempo.  
La paradoja del prefacio tuvo decenas de respuestas. Desde un 
punto de vista meramente probabilístico, apelando a la ley de 
Adams, la solución es obvia. La probabilidad permite que las in-
certezas se vayan sumando, de modo tal que la creencia en una 
conjunción gigante de oraciones no del todo seguras, podría tener 
una probabilidad muy baja. Muchos autores consideran que esto 
no termina de resolver el problema, porque incluso si aceptamos 
que todas las oraciones dentro de un conjunto inconsistente po-
drían tener probabilidad alta, es difícil aceptar que un conjunto 
lógicamente inconsistente sea aceptable como conjunto racional 
de creencias. 
 
Ejercicios  
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1. ¿Puede suceder que P(A) y P(¬(A ∨ B)) sean ambas mayores 
a 0.5? 
2. Supongamos que A y B implican C. Además, P(A) = 0.9 y 
P(B) = 0.9. ¿Puede suceder que P(C) = 0.6? ¿Cuál es la probabi-
lidad permitida para C según el teorema de Adams? 
3. Piense un ejemplo de A y B donde P(A), P(B) y P(¬(A&B)) 
son al mismo tiempo mayores a 0.5 (por ejemplo, tirando un 
dado). 

Parte F: Filosofía de la probabilidad 
 
¿Qué significa que la probabilidad de un evento sea 0.5? Debería 
ser una pregunta fácil de responder.  
Hemos visto que, para la perspectiva bayesiana, la probabilidad 
es entendida como una estimación que hace un agente sobre las 
posibilidades disponibles. Llamamos a esa noción probabilidad 
subjetiva. La idea de la probabilidad subjetiva es que las proba-
bilidades son principalmente representaciones de las actitudes 
subjetivas de los agentes. Podemos ver a las probabilidades como 
simples hipótesis. Dentro de la epistemología formal suele usarse 
esta lectura subjetiva de la probabilidad. Uno de los primeros fi-
lósofos en proponer una lectura subjetivista de la probabilidad 
fue Frank Ramsey, en “Truth and probability” (1926). 
Como vimos anteriormente, la lectura bayesiana de la probabili-
dad se enfrenta a algunos problemas conceptuales, como la im-
posibilidad de tener criterios justificados para otorgarle a los 
eventos su “probabilidad inicial” o prior. 
Existen también lecturas más objetivas de la probabilidad. Por 
ejemplo, si tiro una moneda que no está sesgada, la probabilidad 
de que salga cara y de que salga cruz es la misma. Esto no de-
pende de lo que yo crea, sino de cómo funciona el azar.  
El concepto de azar es muy problemático en física, en matemá-
tica y en filosofía. Pero en casos sencillos, siempre se asume que 
ciertos fenómenos tienen ciertas tendencias. Por ejemplo, en el 
caso anterior, una moneda “justa” tiende a caer cara en un 50% 
de las veces. Obviamente, esta probabilidad no proviene de una 
simple inducción: si tiro la moneda cinco veces, puede pasar que 
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salga cara cuatro de esas cinco veces. Ahora bien, ¿qué pasa si 
tiramos la moneda un número infinito de veces? Siguiendo la Ley 
de los Grandes Números (que veremos más adelante), mientras 
más grande sea el número de intentos, más cerca estará la pro-
porción de su tendencia natural. 
Podemos observarlo con la siguiente simulación (hecha en 
Python), donde tiré un dado muchas veces y anoté cuántas veces 
salió cada número. En el gráfico de la izquierda, tiré el dado 200 
veces, y en el de la derecha, 20.000 veces. Podemos ver que, al 
tirar el dado más veces, la frecuencia termina acercándose a su 
probabilidad original. 

El frecuentismo es la interpretación según la cual una probabili-
dad expresa una frecuencia relativa. Es decir, la probabilidad de 
que la moneda salga cara es ½ porque si tiráramos la moneda 
infinitas veces, la mitad de ellas saldría cara. La lectura frecuen-
tista es la más común en ciencias empíricas como la física.  Otras 
disciplinas como la medicina usan visiones frecuentistas en la 
mayoría de los casos, y otras veces usan lecturas subjetivistas 
bayesianas. Un defensor del frecuentismo en su versión contem-
poránea fue Richard Von Mises (1928). 
Un problema de las teorías frecuentistas es la apelación a una 
serie infinita de repeticiones de un experimento, que por obvias 
razones no puede llevarse a cabo en la realidad. Sin embargo, un 
frecuentista podría observar que, si se repiten los experimentos 
suficientes veces, obtendremos una buena estimación de lo que 
pasaría en una serie infinita. 
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Otro problema para el frecuentismo es la incapacidad de explicar 
la probabilidad de hechos únicos. Por ejemplo, ¿cuál es la proba-
bilidad de que Argentina derrotara a Inglaterra en la Guerra de 
Malvinas? No podemos repetir la guerra infinitamente, ni un nú-
mero suficientemente grande de veces como para saberlo.  
Para estos problemas existen otras teorías objetivas, pero no fre-
cuentistas, de la probabilidad. Por ejemplo, la lectura objetivista 
de la probabilidad como propensión, propuesta por autores como 
Karl Popper (1983). Para Popper, la probabilidad de un hecho 
proviene de la configuración física de la realidad. Por ejemplo, 
la probabilidad de que la moneda salga cara es simplemente una 
consecuencia de la forma y la composición material de la mo-
neda. 
Otra lectura objetivista es la interpretación lógica de la probabi-
lidad, de autores como Keynes (1921). Keynes propone que, en 
ausencia de información, la probabilidad de eventos indistingui-
bles lógicamente será idéntica: lo llamamos Principio de Indife-
rencia. Por eso, la probabilidad de que la moneda salga cara es ½ 
y la probabilidad de que un dado salga 3 es ⅙.  
Algunos filósofos han discutido las posibles relaciones entre la 
probabilidad subjetiva y la probabilidad objetiva. La lectura sub-
jetiva parece dejar demasiada libertad a los agentes, porque solo 
se preocupa por la consistencia de las creencias. Uno de los prin-
cipios que suelen postularse para unir ambas concepciones de la 
probabilidad es el Principio Principal de David Lewis (1986). 
Este principio dice (a grandes rasgos) que, cuando la probabili-
dad objetiva es conocida, la probabilidad subjetiva debe ser igual 
a la probabilidad objetiva. Por ejemplo, si estamos tirando una 
moneda justa, la probabilidad objetiva de que salga “cara” es ½, 
entonces la probabilidad subjetiva que deberías asignarle a ese 
evento es también ½. 

Parte G: Coherencia probabilística y racionalidad 

Una pregunta que se han hecho muchos filósofos es la siguiente: 
¿Qué nos fuerza a nosotros, los seres humanos, a cumplir con los 
axiomas de la probabilidad? Por ejemplo: ¿Por qué, si creemos 
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que la probabilidad de A es ½, deberíamos creer que la probabi-
lidad de ¬A también es ½?  
 
Argumentos pragmáticos: Dutch Books y explotabilidad 
Una idea fundamental dentro del enfoque bayesiano es que la in-
coherencia provoca explotabilidad. Es decir, si no cumplimos 
con los axiomas probabilísticos en nuestras creencias, un agente 
suficientemente perspicaz podrá estafarnos y sacarnos todo nues-
tro dinero.11 La forma en que suele explicarse la explotabilidad 
es mediante apuestas en donde estamos condenados a perder.  
Por ejemplo, supongamos que yo estoy segurísimo de que Boca 
Juniors (el equipo de fútbol más popular de Argentina) va a ganar 
la final de la Copa Libertadores. Estoy 99% seguro. Entonces un 
amigo me ofrece una apuesta:  
 

Apuesta 1: Me das un dólar ahora. Si gana Boca, te doy 100 
dólares. Si pierde, me quedo con el dólar. 
 

Obviamente, si soy suficientemente racional, voy a entrar en esa 
apuesta. Se trata de una apuesta muy conveniente: con sólo poner 
1 dólar, sé que muy posiblemente voy a ganar 100.  
Pero una buena pregunta es: ¿hasta qué punto voy a seguir apos-
tando? Asumiendo que en estos casos la utilidad del dinero es 
lineal (esto lo discutiremos en detalle en el próximo capítulo), si 
estoy 99% seguro de que ganará Boca, podría entrar en esta 
apuesta: 
 

Apuesta 98: Me das 98 dólares ahora. Si gana Boca, te doy 
100 dólares. Si pierde, me quedo con los 98 dólares. 
 

Incluso debería ser indiferente respecto a esta apuesta: 
 

Apuesta 99: Me das 99 dólares ahora. Si gana Boca, te doy 
100 dólares. Si pierde, me quedo con los 99 dólares. 

 
11 La idea de que la irracionalidad genera explotabilidad es más general, 
no sólo aplica a los axiomas de la probabilidad sino presuntamente tam-
bién a cualquier otro principio de la racionalidad. 
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Decimos que una apuesta es justa cuando, tomando en cuenta 
nuestras probabilidades subjetivas, no tendríamos por qué recha-
zarla. La apuesta 99 es justa. 
En términos más generales, si lo que está en juego en la apuesta 
es S (es decir, S es el “pozo” de la apuesta), y yo creo que el 
evento A va a pasar con probabilidad p, debería estar dispuesto 
a apostar $pS a que el evento A va a suceder, para ganar $(1 - 
p)S. Por ejemplo, si yo creo en 0.99 que Boca va a ganar, y el 
pozo son 100.000 dólares, debería estar dispuesto a apostar 
99.000 dólares para ganar 1.000. Esto no significa que voy a estar 
feliz de apostar de ese modo, sino simplemente que no tengo nin-
gún motivo para no apostar así. 
Todos estos conceptos nos sirven para entender por qué debemos 
cumplir con los axiomas probabilísticos. Pues supongamos que 
creo que Boca va a ganar con 0.6 y también creo que Boca no va 
a ganar con 0.6. Aquí, obviamente, incumplo los axiomas de 
Kolmogórov. Una forma de mostrar que se trata de un tipo de 
irracionalidad es que un agente podría ofrecerme este conjunto 
de apuestas: 
 

Apuesta A: Me das 51 dólares. Si gana Boca, te doy 100 dóla-
res. Si no gana, me quedo con tus 51 dólares.   
Apuesta B: Me das 51 dólares. Si no gana Boca, te doy 100 
dólares. Si gana, me quedo con tus 51 dólares. 
 

Por creer que Boca va a ganar con 0.6 de probabilidades, voy a 
entrar en la apuesta A. Y por creer que Boca no va a ganar con 
0.6 de probabilidades, voy a entrar en la apuesta B. El problema 
es que ahora, pase lo que pase, voy a terminar perdiendo dinero. 
Porque le di al agente 102 dólares. Si Boca gana, obtengo 100 
dólares, y si pierde también. Pero en cualquier caso voy a tener 
una pérdida neta de 2 dólares. 
El teorema de Dutch Book nos muestra que cualquier violación 
al cálculo de probabilidades nos vuelve pasibles de ser explota-
dos de este modo: alguien nos puede ofrecer un conjunto de 
apuestas que estamos racionalmente obligados a aceptar, pero 
que nos dará finalmente pérdida, en cualquier caso. 
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*Una prueba del Teorema de Dutch Book 
De aquí en más supondremos que el pozo de la apuesta, es decir 
S, es $1, así que podremos obviarlo. También por legibilidad va-
mos a ignorar los signos de dólar “$” cuando no sean estricta-
mente necesarios.  
 
Teorema de Dutch Book. Si nuestras probabilidades personales 
no satisfacen los axiomas de la probabilidad, nos enfrentamos a 
una apuesta de pérdida segura. 
 
Prueba. Recordemos que en una apuesta justa, cuando mi creen-
cia en A es p, voy a apostar p a favor de A (o 1-p contra A), y 
obtendré los siguientes resultados, dado que el pozo es 1: 
 

 
Resultado de 
apuesta por A 

Resultado de 
apuesta contra A 

Sucede A $(1 - p) $-(1 - p) 

Sucede ¬A $-p $p 

 
Ahora veremos que, frente a cada violación de los axiomas, un 
corredor nos puede ofrecer una apuesta “justa” o un conjunto de 
apuestas “justas” con pérdida segura. 
 
Axioma 1: Normalidad 
Si P(A) = p, requerimos que 0 ≤ p ≤ 1. 
Ahora supongamos que un agente incumple este principio. Pue-
den pasar dos cosas: o bien le asigna menos de 0, o bien le asigna 
más de 1. 

A. Supongamos p < 0 
[Creo demasiado poco en A] 

Un corredor nos puede ofrecer una apuesta justa en contra de A, 
por lo que usaremos esta parte de la tabla: 
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Resultado de apuesta contra A 

Sucede A $-(1 - p) 

Sucede ¬A $p 

Resultado: Asumimos que p = -r, donde r es un número positivo 
(p es un número negativo). Si sucede ¬A, obtengo -r. Si sucede 
A, obtengo -(1 - (- r)) = -(1 + r). En ambos casos pierdo dinero. 

B. Supongamos p > 1
[Creo demasiado en A]

Un corredor nos puede ofrecer una apuesta justa a favor de A, 
por lo que usaremos la otra parte de la tabla: 

Resultado de apuesta por A 

Sucede A $(1 - p) 

Sucede ¬A $-p 

Resultado: Supongamos que p = 1 + r. Si sucede ¬A, el resultado 
es -(1 + r). Si sucede A, obtengo 1 - (1 + r) =  1 - 1 - r = -r. En 
ambos casos pierdo dinero. 

Axioma 2: Certeza 
Supongamos que A sucede seguro, pero p < 1. 
[Creo demasiado poco en A].  
Un corredor nos puede ofrecer una apuesta justa contra A: 

Resultado de apuesta contra A 

Sucede A $-(1 - p) 

Sucede ¬A $p 

Seguro pierdo (1 - p), porque no es posible que suceda ¬A. 
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Axioma 3: Aditividad  
El axioma 3 de Kolmogórov nos dice que si A y B son mutua-
mente excluyentes, entonces P(A ∨	B) = P(A) + P(B). 
Usaremos esta nomenclatura para las creencias en cada proposi-
ción: P(A) = p, P(B) = q y P(A ∨	B) = r. Dados los axiomas 
debería suceder que r = p + q. Ahora supongamos que esto no 
sucediera. Esto podría pasar de dos formas distintas. 
 

A. Supongamos r < p + q  
[creo demasiado en A y B, y poco en A∨B] 

Entonces el corredor nos ofrece las siguientes apuestas: 
1. Apostar p a favor de A 
2. Apostar q a favor de B 
3. Apostar (1- r) contra A ∨	B 

Debería aceptar estas apuestas, porque son “justas”. Ahora ob-
servemos que hay tres posibles estados del mundo: dado que A 
y B son mutuamente excluyentes, es imposible que suceda A&B. 
Y en los tres posibles estados, terminaré perdiendo dinero. 
Resultado: 
 

 
Pago 
por 1 

Pago 
por 2 

Pago 
por 3 

Pago final 

Sucede 
A&¬B 

$(1-p) $-q $-(1-r) $(1-p-q-1+r) = 
$(r-p-q) 

Sucede 
¬A&B 

$-p $(1-q) $-(1-r) $(-p+1-q-1+r) = 
$(r-p-q) 

Sucede 
¬A&¬B 

$-p $-q $r $(r-p-q) 

 
Siempre voy a obtener una misma cantidad (r-p-q) = r - (p + q), 
que será negativa, porque asumimos que r < p + q. 
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Para una prueba completa también debo probar la parte [B], es 
decir, que hay un contrato de pérdida seguro si r > p + q. Esto es 
simétrico y queda al lector. 
Con esto hemos probado que, si nuestras creencias no satisfacen 
los axiomas probabilísticos, nos enfrentamos a apuestas de pér-
dida segura. 

QED 
 
*Argumentos epistémicos: adecuación al mundo 
Algunos autores desarrollaron justificaciones puramente episté-
micas, no pragmáticas, para la coherencia probabilística. Así 
como los argumentos pragmáticos nos muestran que las asigna-
ciones no-probabilísticas nos vuelven posibles víctimas de 
apuestas de pérdida segura, los argumentos epistémicos mues-
tran que las asignaciones no-probabilísticas nos alejan de la ver-
dad y nos acercan al error. 
Con más detalle, el argumento epistémico que presentaré en esta 
sección nos dice que, si hubiera distintos escenarios posibles, un 
estado epistémico probabilísticamente incoherente siempre (en 
todos los escenarios) va a ser menos adecuado a la realidad que 
uno probabilísticamente coherente. Para probar este resultado, 
necesitamos un método para medir la adecuación de una proba-
bilidad respecto a un hecho. Por suerte, existe un método de me-
dición para estos propósitos: el puntaje de Brier, llamado así por 
su creador, el meteorólogo Glenn Brier (1913-1998). 
El puntaje de Brier mide la distancia entre una probabilidad y la 
realidad. Decimos que la realidad r tiene dos resultados posibles: 
verdad (1) o falsedad (0). El puntaje de Brier para una asignación 
de probabilidad P(e) para un evento e se define del siguiente 
modo: 
 

El puntaje de Brier de P(e) es (P(e) - r)2 

 
La aplicación natural para el puntaje de Brier es la meteorología. 
Por ejemplo, si llueve (1) y la probabilidad que le asigno a que 
llueva es 0.6, mi grado de adecuación será (0.6 - 1)2 = (-0.4)2 = 
0.16. Si la probabilidad que le asigno a que llueva es 0.1, mi 
grado de adecuación será (0.1 - 1)2 = (-0.9)2 = 0.81. Mientras más 
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alto sea el número de Brier, más inadecuado es mi estado epis-
témico: un agente omnisciente tendría un puntaje de Brier de 0. 
Aquí voy a desarrollar una prueba muy escueta de la coherencia 
por adecuación, para un par de eventos, p y ¬p, siguiendo a Fi-
telson (inédito). Dado que no asumimos la coherencia de los 
agentes, la probabilidad asignada a p será independiente de la 
asignada a ¬p. Nos interesan dos mundos, el mundo w1 donde p 
es verdadera, y el mundo w2 donde p es falsa. Usando la fórmula 
anterior, los puntajes en cada mundo pueden calcularse así: 
 

- El puntaje en w1 (donde p es verdadera) es (P(p) - 1)2 + P(¬p)2  
- El puntaje en w2 (donde p es falsa) es P(p)2 + (P(¬p) - 1)2 

De Finetti mostró el siguiente teorema: 
 
Teorema (De Finetti 1970): La asignación de probabilidad P es 
no probabilística si y sólo si hay otra asignación de probabilidad 
P’ cuyo puntaje de Brier es más bajo (es decir, está más cerca de 
la realidad) en todo mundo posible. 
 
Antes de hacer un esbozo de prueba, pensemos un ejemplo. Su-
pongamos que P(p) = 0.7 y P(¬p) = 0.7, siendo nuestra asigna-
ción obviamente irracional (dado que el grado de creencia en p y 
el de ¬p deberían sumar 1). Si esto sucede, entonces el puntaje 
de Brier en caso de que p sea falso es 0.72 + 0.32 = 0.49 + 0.09 = 
0.58, mientras que cuando p es verdadero, el puntaje de Brier es 
también .58. Ahora pensemos en la asignación P’(p) = P’(¬p) = 
0.5. En caso de que p sea falso, el puntaje de Brier es 0.52 + 0.52 

= 0.25 + 0.25 = 0.5, mientras que cuando p es verdadero el pun-
taje será también 0.25 + 0.25 = 0.5. Aquí vemos que P’, la asig-
nación coherente, tiene un menor puntaje de Brier que P (la asig-
nación incoherente) en ambos mundos posibles. 
Ahora necesitamos probar que siempre que haya una asignación 
incoherente, hay otra asignación coherente con mejor puntaje de 
Brier en todo mundo posible.  
Para visualizar informalmente la prueba, lo más sencillo es pen-
sar en estos gráficos donde aparece tanto el valor de verdad de p 
como nuestro grado de creencia. El eje horizontal representa la 
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asignación de probabilidad a p, y el vertical representa la asigna-
ción de probabilidad a ¬p: 
 

 
Gráfico 1 

El plano también sirve para representar el mundo w1, donde p es 
verdadera, y el mundo w2, donde p es falsa. Cada asignación de 
probabilidad a p y ¬p es representable como un punto en el plano. 
La línea diagonal representa las asignaciones coherentes de pro-
babilidad (por ejemplo, 0.6 a p y 0.4 a ¬p).  
En el Gráfico 1 podemos ver un punto marcado D, probabilísti-
camente incoherente (creencia de 0.2 en p y de 0.4 en ¬p) y dos 
circunferencias que pasan por él. Los puntos en una circunferen-
cia son los que están a la misma distancia de w1 en un caso, y en 
la otra circunferencia son los que están a la misma distancia de 
w2. De este modo, cada circunferencia también delimita un con-
junto de puntos que son más cercanos a la realidad, ya sea w1 o 
w2. La sección sombreada representa el conjunto de puntos que 
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son más cercanos a la realidad en ambos mundos, w1 y w2, res-
pecto al punto D que habíamos marcado.  
Es sencillo observar que, dentro de ese conjunto, hay puntos que 
constituyen una asignación probabilística (i.e. aquellos que per-
tenecen a la diagonal). El argumento puede generalizarse para 
cualquier punto incoherente en ese plano. Así probamos un lado 
del enunciado de DeFinetti: siempre habrá un punto en la diago-
nal que domina al punto que no está en la diagonal, es decir, que 
está más cerca de la realidad cualquiera sea el hecho que suceda 
(ya sea w1 o w2). 
Veamos ahora el otro lado del teorema. 

Gráfico 2 

El Gráfico 2 (donde la asignación de probabilidades es aproxi-
madamente 0.45 a p y 0.55 a ¬p) nos muestra que sólo una asig-
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nación probabilística puede evitar que haya “espacios sombrea-
dos”, es decir, puntos más cercanos a la realidad en ambos mun-
dos. Por razones geométricas, sólo los puntos que pertenecen a 
la diagonal pueden cumplir con esa propiedad. 
Un aspecto frecuentemente observado de los resultados de ade-
cuación es que no nos muestran que cualquier distribución pro-
babilística sea de hecho mejor que cualquier distribución incohe-
rente (Kolodny 2007); lo que muestran es que, si tenemos una 
distribución incoherente, podemos estar seguros de que habrá 
una distribución coherente que la supere en todos los escenarios 
posibles. Por eso, la aplicación práctica de este resultado depen-
derá de que seamos capaces de encontrar esa distribución cohe-
rente que supere a la distribución incoherente que tenemos.  
En un artículo reciente, De Bona y Staffel (2018) desarrollan una 
manera de encontrar una asignación óptima a partir de una asig-
nación incoherente, buscando el camino más corto entre la asig-
nación incoherente y el conjunto de asignaciones coherentes (es 
decir, la diagonal en el plano). En el Gráfico 1, por ejemplo, el 
punto más cercano dentro de la diagonal al punto D (0.2, 0.4) es 
(0.4, 0.6). 
  
Ejercicios  
 
1. Probar usando Dutch Book que la probabilidad de A y la de 
¬A sumadas no pueden ser mayores a 1. 
 
2. Respecto a la prueba por adecuación: 
a. Creo que va a llover (p) con 0.6 y que no va a llover (¬p) tam-
bién con 0.6. Calcular el puntaje de Brier en los mundos posibles 
donde llueve y donde no llueve.  
b. Comparar con el puntaje de Brier coherente cuando creo que 
va a llover con 0.6 y que no va a llover con 0.4. ¿Domina este al 
caso del ejercicio 2? 
c. ¿Qué sucede si P(lloverá) es 0.5 y P(no lloverá) es 0.5? ¿Do-
mina este al caso del ejercicio a?  
d. Explique lo sucedido a partir del teorema de adecuación de De 
Finetti. 
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Parte H. Nociones de estadística 
 
Las reglas básicas de la probabilidad pueden servir tanto para 
probabilidades subjetivas como para probabilidades objetivas. 
Para las probabilidades subjetivas, la regla fundamental es la de 
Bayes. Para las probabilidades objetivas, el resultado fundamen-
tal es el de Jakob Bernoulli (1654-1705); se considera que 
Bernoulli descubrió la “ley de grandes números”.  
La ley de los grandes números nos dice que, si la repetición de 
un evento con probabilidad p tiende a infinito, la frecuencia re-
lativa será más cercana a p. Es decir, si tiro 5 veces una moneda, 
casi cualquier cosa podría pasar; pero si tiro la moneda un millón 
de veces, aproximadamente saldrá la mitad “cara” y la mitad 
“cruz”. Sin embargo, decimos “aproximadamente”. El resultado 
raramente será la mitad exacta (es decir, 2.5 millones de veces 
“cara”, y 2.5 “cruz”). Pero tampoco podría desviarse demasiado 
hasta los costados. Estos son los temas que explora la estadística.  
Supongamos que tiro 20 veces una moneda. ¿Cuántas veces sale 
“cara”? Podría salir 10 veces, pero también 9 u 8 veces. Mucho 
más raro es que saliera 20 veces “cara”, o 20 veces “cruz”. Ahora 
bien, podríamos repetir el experimento muchas veces y anotar 
los resultados.  
El siguiente gráfico es el resultado de una simulación (realizada 
en Python). Una simulación es un proceso computacional que 
intenta replicar otro fenómeno, que generalmente nos llevaría de-
masiado tiempo calcular manualmente. En este caso, tiramos una 
moneda 20 veces y anotamos cuántas veces sale “cara”. Eso po-
dríamos hacerlo manualmente una vez (solo es cuestión de tirar 
una moneda 20 veces). Pero usamos la simulación para repetir 
este proceso 2500 veces, para darnos una idea general del fenó-
meno. Los lectores más escépticos podrían tirar una moneda 20 
veces y calcular cuántas veces sale “cara”; y repetir este proceso 
2500 veces manualmente (no debería llevar más que un par de 
días). 
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El resultado, como podemos ver, es una distribución en forma de 
“campana”, con barras más altas en el medio, y barras más bajas 
a los costados. ¿Cuál fue el promedio? A esto lo llamamos pro-
medio muestral. En mi simulación me dio 9.96. Es decir, de cada 
20 tiros, en promedio 9.96 salen cara. Aquí se cumple la predic-
ción de Bernoulli, según el cual el promedio debería ser aproxi-
madamente 10, es decir, p × n. 
También podemos observar que, en el gráfico, casi todos los re-
sultados están entre 5 y 15, concentrándose la mayor parte alre-
dedor del promedio. Para entender este fenómeno podemos in-
troducir el concepto de desviación estándar. Se trata simple-
mente de una especie de promedio, el promedio de la desviación 
entre el promedio de la muestra y los resultados. Es decir, medi-
mos la dispersión a partir del promedio X. Queremos obtener un 
número d tal que la gran mayoría de los resultados estén entre (X 
+ d) y (X - d).  
Para calcular la desviación a partir de una muestra, lo primero 
que podríamos hacer es notar las diferencias entre el promedio X 
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y cada resultado observado Xi. En nuestro caso, hay 2500 desvia-
ciones. El promedio de las desviaciones (usualmente llamado 
“desviación media”) me dio 1.81. 
La forma típica de medir la dispersión, usando el concepto de 
desviación estándar, no busca directamente el promedio de las 
desviaciones, sino algo un poco distinto. La idea es: 

1. Calcular el cuadrado de cada desviación (número posi-
tivo). Así evitamos las desviaciones negativas.
2. Sumar todos esos cuadrados.
3. Dividir esa suma por la cantidad de resultados.
4. Sacar la raíz cuadrada de esa suma. Así compensamos el
cuadrado calculado en el punto 1.

Es decir: 
Siendo n la cantidad de tiros, Xi el resultado de cada tiro, y X el 
promedio: 

Desviación estándar =	#∑ (Xi	-	X)2 
i

n

El resultado para nuestra simulación fue 2.27. Si vemos el grá-
fico, resultará que la gran mayoría de los resultados (algo así 
como el 68%) están entre el promedio y la primera desviación 
(es decir, aproximadamente entre 8 y 12). Si el experimento in-
cluyera más tiros, la desviación sería menor. 
Podemos observar que en este experimento estamos tirando una 
moneda, que podría salir cara o cruz. Llamamos a estos ejemplos 
intentos binomiales. En estos casos, hay dos eventos (por ejem-
plo, cara o cruz, verdad o falsedad, etc.), la probabilidad de que 
salga el primero (“éxito”) en vez del segundo (“fracaso”) es p, y 
yo pruebo n veces. Como ya señalamos, si n es suficientemente 
grande, la cantidad de “éxitos” será aproximadamente p × n, por 
la ley de los grandes números. Más adelante veremos cómo po-
demos predecir la desviación estándar en estos casos. 
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Aproximaciones normales 
Observemos ahora el gráfico de antes sobre cuántas veces sale 
cara si tiro una moneda 20 veces. Como señalamos, el gráfico 
tiene la forma (aproximada) de una campana. Muchas distribu-
ciones tienen esta forma (mucho más, cuando se trata de fenó-
menos físicos o naturales). Por ejemplo, la altura en hombres y 
la altura en mujeres en las Islas Canarias tienen esta distribución 
(normalizada):12 
 

 
 
Estas curvas suelen llamarse normales o gaussianas. Todas estas 
curvas tienen dos elementos: 
 

- El promedio o pico, que suele ser representado con μ. 
- La desviación estándar, que suele ser representada con σ. 

 
12 Datos del Instituto Canario de Estadística de 2021. 



40/ Una introducción a la epistemología formal 

 

En el caso de las curvas normales, se dan algunas regularidades 
que son muy relevantes para lo que veremos después. En una 
curva normal, pasará lo siguiente: 
 

-  68% de los casos estarán entre el pico y la primera desviación. 
-  95% de los casos estarán entre el pico y la segunda desvia-
ción. 
-  99% de los casos estarán entre el pico y la tercera desviación. 

Podemos diagramarlo así: 

 
 
En general, cuando se trata de un fenómeno binomial (como tirar 
una moneda), y necesito calcular la cantidad de “éxitos” en una 
serie de intentos, es fácil calcular el promedio y la desviación 
estándar, siguiendo el método propuesto por Bernoulli. Si n es la 
cantidad de veces que hago el intento, y p es la probabilidad de 
“éxito” en cada caso, el promedio de veces que sucederá el 
evento podemos calcularlo con la fórmula μ = p × n. Para la des-
viación estándar, podemos usar la fórmula  σ = %(1	-	p)pn.  
Por ejemplo, para el experimento de antes (tirar una moneda 20 
veces), n = 20, y p = .5. Entonces usando la fórmula, el promedio 
será p × n = 20 × .5 = 10. Muy similar a lo que dio en la simula-
ción (9.96). Y la desviación estándar debería ser la raíz cuadrada 
de (0.5 × 0.5 × 20), es decir, la raíz cuadrada de 5, que es 2.23. 
Muy similar a lo que dio en la simulación (2.27). Es decir, la 



Diego Tajer /41 

aproximación de Bernoulli va a ser un excelente predictor de la 
distribución que tendremos. 

Ejemplo: el prisionero aburrido 
Un prisionero está muy aburrido y tira una moneda 10.000 veces. 
Supongamos que la moneda es justa. Obviamente el promedio 
será 5000. También podemos calcular la desviación estándar.  
Recordemos que σ = %(1	-	p)pn . Calculamos (1 - p)pn = ½ × ½ 
× 10.000 = ¼ × 10.000 = 2.500. La raíz cuadrada de esto es 50. 
Es decir, si tiro la moneda 10.000 veces, hay aproximadamente 
68% de probabilidad de que salga “cara” entre 4950 y 5050 ve-
ces. Mientras que hay aproximadamente 95% de probabilidad de 
que salga “cara” entre 4900 y 5100 veces. 

Significancia 
A veces se asume que la naturaleza se comporta de forma “nor-
mal”, es decir, distribuida en forma de campana. Una actividad 
donde las distribuciones normales son importantes es el testeo de 
hipótesis.  
Supongamos que quiero testear que una pastilla es buena para el 
insomnio, ¿Qué hago? Lo que se suele hacer es lo siguiente: 

- Tomo una muestra suficientemente grande.
- A la mitad de la muestra les doy la pastilla.
- A la otra mitad les doy un placebo (o no le doy nada).
- Comparo la efectividad de ambos tratamientos.
- Si hay suficiente diferencia positiva, entonces la pastilla es efec-
tiva.

Pero todo esto suena muy impreciso (“suficientemente grande”, 
“suficiente diferencia”, etc.). La estadística nos puede ayudar a 
determinar parámetros para esta actividad. Para determinar estos 
parámetros, hace falta introducir una nueva terminología. 
La hipótesis nula es la hipótesis de que “no hay un efecto signi-
ficativo”. Si el efecto detectado es grande, entonces existe un 
efecto significativo, y la hipótesis nula queda “refutada”. Para 
determinar la significancia del resultado, necesito saber la pro-
babilidad de obtener los datos que obtuve bajo la hipótesis nula 
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(es decir, si no hubiese efecto significativo). Esa probabilidad p 
es lo que suele llamarse el nivel de significancia. A veces se 
llama p-valor (o “p-value”, en inglés). Idealmente quisiera que 
ese valor sea lo más bajo posible. Por ejemplo, si quiero defender 
que un tratamiento médico es efectivo, necesito que los resulta-
dos obtenidos al usar ese tratamiento sean muy improbables de 
acuerdo con la hipótesis nula.  
Para diseñar estas pruebas usamos ciertos criterios: en general, 
decimos que la evidencia E es significativa respecto a la hipótesis 
nula H cuando la probabilidad de E dado H es menor a 0.05 (o a 
veces, en el mejor de los casos, menor a 0.01).  Por ejemplo, la 
pastilla es útil cuando suponiendo que el tratamiento no tiene 
efecto, la evidencia que encontramos “sorprende”. En otras pa-
labras, el resultado muy probablemente no podría haberse dado 
si no se hubieran tomado las pastillas. El resultado puede ser sig-
nificativo “al nivel del 5%” o incluso “al nivel del 1%”. 
Filosóficamente, lo que podemos confirmar en un experimento 
(donde p = 0.05) es esta afirmación condicional: “si la hipótesis 
nula es cierta, lo que sucedió tiene una probabilidad de menos de 
5%”. Esto se interpreta, en un contexto científico, como un re-
chazo de la hipótesis nula, o una afirmación de que el efecto sí 
es significativo. 
 
Ejemplo: el prisionero aburrido (otra vez) 
El prisionero tira la moneda 10.000 veces, suponiendo que es 
justa. Como vimos en la sección anterior, calculando la desvia-
ción estándar, obtenemos que hay: 
 

- Aproximadamente 68% de probabilidad de que salga “cara” 
entre 4950 y 5050 veces. 
- Aproximadamente 95% de probabilidad de que salga “cara” 
entre 4900 y 5100 veces. 

 
Ahora supongamos que el prisionero hace la prueba y le sale 
“cara” 4500 veces. ¿Puede confirmar que la moneda de hecho 
está viciada?  
Filosóficamente, si nos ponemos muy estrictos, solo podemos 
decir que “si la hipótesis nula fuera cierta, es decir, si la moneda 
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fuera justa, algo extremadamente raro (< 1%) sucedió”. Científi-
camente, diríamos que la hipótesis nula queda rechazada (porque 
p < 0.01). Es decir, podemos afirmar que la moneda está viciada. 
 
Los testeos de significancia se usan en muchas, o todas, las áreas 
de la ciencia empírica. En medicina, es común (casi universal) 
hacer este tipo de testeos. Por ejemplo, para evaluar la efectivi-
dad de un tratamiento, se mide la distancia entre el grupo tratado 
y el grupo control. En psicología es también común el uso de 
estos testeos (dentro de los estudios cuantitativos). Por ejemplo, 
si queremos saber si el sexo tiene un efecto en la autoestima, de-
bemos comparar las medias en una escala de autoestima en hom-
bres y mujeres, y determinar si la diferencia entre las medias es 
estadísticamente significativa. Para evaluar esas afirmaciones, en 
cualquier revista de psicología encontramos tablas y análisis es-
tadísticos de resultados. Otras ciencias sociales, como la socio-
logía, la economía y las ciencias políticas utilizan también esta 
metodología. Cada disciplina tiene sus propios métodos, que se 
utilizan para distintos tipos de experimentos. Explorar este tema 
en detalle requeriría un capítulo aparte. 
Sin embargo, esto no significa que los científicos conozcan los 
detalles matemáticos de la estadística. Muchos investigadores 
(¿la mayoría?) usan paquetes estadísticos como SPSS o STATA 
que hacen las cuentas solas, sin necesariamente comprender qué 
significa cada resultado. Por ejemplo, en un archivo de SPSS, 
podría anotar datos de salarios de una gran cantidad de hombres 
y mujeres. Luego, apretando un botón, podría comparar sus sa-
larios y notar si su diferencia es significativa (es decir, si hay una 
“brecha de género”). Parte del entrenamiento de un científico, 
especialmente en medicina y distintas ciencias sociales, es apren-
der a utilizar esas herramientas computacionales. 
 
Ejercicios 
 
1. En general, cada 51 hombres, nacen 49 mujeres. Supongamos 
que en un país nacen 800.000 bebés al año. 
¿Cuántas mujeres van a nacer el próximo año? Encuentre el pro-
medio, la desviación estándar (redondear en un número entero), 
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y una estimación usando probabilidades, similar a la del ejemplo 
del prisionero. 
 
2. La curva de salarios en España se ve así. ¿Es una curva de 
Gauss? 

 
 
 
Soluciones para el capítulo 1  
 
PARTE A 
1.  
a. Tengo 1/6 de probabilidades de sacar el mismo número en am-
bos dados. 
b. Aquí tengo 1/18 chances de ganar: de entre los 36 posibles 
resultados, solo gano con (3, 4) y (4, 3). 
c. Es más probable que sumen 7. Hay 6 posibles escenarios: 
(1,6), (2,5), (3,4), (4,3), (5,2), (6,1). En cambio, hay solo 5 posi-
bilidades de que sume 6: (1,5), (2,4), (3,3), (4,2), (5,1). 
 
2. 
a. Con vocal impar tengo 2/5 × 5/9 = 10/45 = 2/9. 
b. Con consonante par tengo 3/5 × 4/9 = 12/45.  
c. Con alguna de las dos anteriores: 12/45 + 10/45 = 22/45. 
d. Me conviene jugar consonante impar. De este modo tengo 3/5 
× 5/9 = 15/45 = 1/3. 
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3.  
Una forma de probarlo es la siguiente: 
Supongamos que A es una contradicción.  
Entonces ¬A es una tautología. Por Certeza, P(¬A) = 1. 
Pero P(¬A) = 1 - P(A), por Teorema de Negación.  
Entonces 1 = 1 - P(A). Por lo tanto, P(A) = 0. 

PARTE B 
1. 
a. 1/10 × 1/10 = 1/100.
b. 1/10 × 3/39 = 3/390 = 1/130.
c. Sin reemplazo: ¾ × ¾ = 9/16.
Con reemplazo: ¾ × 29/39 = 87/156 = 29/52.
d. P(sacar 7 en la primera mano ∨ sacar 7 en la segunda mano) =
P(sacar 7 en la primera mano) + P(sacar 7 en la segunda mano) -
P(sacar 7 en ambas manos) = 1/10 + 1/10 - 1/100 = 0.19.
Otra forma de calcular sin usar esa fórmula: la probabilidad de
que salga algún número no-7 es 0.9, la probabilidad de que pase
dos veces es 0.81. Entonces 1 - 0.81 = 0.19.

2. 
a. P(Palermo y Positivo) = 1/10 × 4/10 = 4/100
b. P(No Palermo y Positivo) = 9/10 × 1/10 = 9/100
P(Positivo) = P(Palermo y Positivo) + P(No Palermo y Positivo)
= (4 + 9) / 100 = 13/100
c. P(Palermo | Positivo) = P(Palermo y Positivo) / P(Positivo) =
4/13
d. Usando el ejercicio anterior, una vez que le hago la prueba a
uno y le da positivo, la probabilidad “previa” de que sean de Pa-
lermo es 4/13. Es solo cuestión de repetir los cálculos con nuevos
priors. Ahora si le hago la prueba al otro y también da positivo,
la probabilidad de que ambos sean de Palermo es:
P(Palermo y Positivo) = 4/13 × 4/10 = 16/130
P(No Palermo y Positivo) = 9/13 × 1/10 = 9/130
P(Positivo) = 25/130
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P(Palermo | Positivo) = P(Palermo & Positivo)/P(Positivo) = 
16/25 = 0.64 
 
PARTE C 
 
1. 
a. 
P(D) = 0.1 
P(I|D) = 0.6 
P(I|¬D) = 0.2 
P(D|I) =  

P(I | D) × P(D)
P(I | D) × P(D) + P(I | ¬D) × P(¬D) 

 

 
= (0.6 × 0.1) / [(0.6 × 0.1) + (0.2 × 0.9)] = 0.06 / 0.24 = 1/4 
 
b.  
P(D) = 0.25 (nueva probabilidad) 
P(A|D) = 0.5 
P(A|¬D) = 0.1 
P(D|A) =  

P(A | D) × P(D)
P(A | D) × P(D) + P(A | ¬D) × P(¬D) 

 

 
= (0.5 × 0.25) / [(0.5 × 0.25) + (0.1 × 0.75)] =  
= 0.125 / [0.125 + 0.075] = 0.125 / 0.2 = 0.625 
 
 
2.  
a. 
P(Negativo | Tengo) = 0.05  
P(Negativo | No Tengo) = 0.99 
 
P(Tengo | Negativo) =  
 

P(Neg | Tengo) × P(Tengo)
P(Neg | Tengo) × P(Tengo) + P(Neg | No Tengo) × P(No Tengo) 
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= 0.05 × 0.03 / (0.05 × 0.03 + 0.99 × 0.97)  
= 0.0015 / 0.96015 = 0.001  
Por esta razón, se considera que un resultado negativo de HIV a 
los 28 días es definitivo. 
 
b.  
P(Positivo | Tengo) = 0.985 
P(Positivo | No Tengo) = 0.003  
P(Tengo) = 0.004 
 
P(Tengo | Positivo) =  
 

P(Pos | Tengo) × P(Tengo)
P(Pos | Tengo) × P(Tengo) + P(Pos | No Tengo) × P(No Tengo) 

 

 
= 0.985 × 0.004 / [0.985 × 0.004 + 0.003 × 0.996]   
= 0.0039 / 0.0069 = 39/69 ≅ 40/70 ≅ 4/7 
Por esta razón, un resultado positivo de HIV requiere de pruebas 
adicionales. 
 
PARTE D 
1. 
Sabemos que 𝝻({145}) = 0.3, 𝝻({8}) = 0.2, 𝝻({132}) = 0.5. 
Entonces la nueva probabilidad de que sea el 8 es: 
P({8}|{8,132}) = P({8} ∩ {8,132}) / P({8,132}) = 
= P({8}) / P({8,132}) = 0.2 / 0.7 = 2/7 
 
2. 
La proposición “va a venir un bus de 3 cifras” o {145, 132} es 
estable. En primer lugar, porque P({145,132}) = 0.8. Además su 
probabilidad sigue siendo > 0.5 bajo condicionalización con 
cualquier proposición compatible. Condicionalizada bajo W, su 
probabilidad sigue siendo 0.8. Condicionalizada bajo {132} o 
{145}, su probabilidad será 1. Condicionalizada bajo {132, 8} su 
probabilidad será P({132}) / P({132, 8}) = 5/7. Condicionalizada 
bajo {145, 8}, su probabilidad será P({145})/P({145, 8}) = 3/5.   
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PARTE E 
1. No, no puede suceder. Si P(A) es mayor a 0.5, P(A ∨ B) tam-
bién lo es, por el Teorema de Validez. Entonces P(¬(A ∨	B)) es
menor a 0.5

2. Uso la fórmula de Adams: P(A) + P(B) - 1 = 1.8 - 1= 0.8.
Entonces debo creer C con probabilidad mayor o igual a 0.8. No
puedo creer racionalmente C en probabilidad 0.6.

3. A es “va a salir 1, 2, 3 o 4”, B es “va a salir 3, 4, 5 o 6”. Ambos
son probables en 0.66. Pero A&B es “va a salir 3 o 4” y esto solo
es 0.33 probable. Entonces ¬(A&B) es probable en 0.66 también.

PARTE G 
1.  
Supongamos que P(A) + P(¬A) > 1 
[Creo demasiado en A y ¬A] 
Digamos que P(A) = p y P(¬A) = q, y que p + q > 1. 
Te hago apostar esto: p sobre A, y q sobre ¬A. 
Entonces te ofrezco lo siguiente: 

Resultado por 
apuesta sobre A 

Resultado por 
apuesta sobre ¬A 

Sucede A 1 - p -q

Sucede ¬A -p 1 - q 

Resultado: si sucede A, obtengo (1 - p - q) = 1 – (p + q), que debe 
ser negativo. Lo mismo obtengo si sucede ¬A. 

2. 
a. Si llueve: obtengo 0.16 + 0.36 = 0.52.
Si no llueve: obtengo 0.36 + 0.16 = 0.52.
b. Si llueve: obtengo 0.16 + 0.16 = 0.32.
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Si no llueve: obtengo 0.36 + 0.36 = 0.72. 
Esta distribución es probabilística pero no domina a la anterior. 
c. El puntaje es 0.5 en cada mundo. Entonces domina a la distri-
bución del punto a.
d. El teorema solo nos dice que una asignación de probabilidad
incoherente tiene una asignación probabilística que lo domina.
En este caso, la tercera es coherente y domina a la primera. No
estamos diciendo que todas las asignaciones coherentes dominan
a todas las incoherentes; de hecho, la segunda no domina a la
primera.

PARTE H 
1.  
σ = √0.51 × 0.49 × 800000 ≅ 447 
µ = 392.000 
Es decir, hay 68% de probabilidades de que sean entre 391.553 
y 392.447. 
Hay 95% de probabilidades de que sean entre 391.106 y 392.894. 

2. No es una curva normal porque no es simétrica.
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CAPÍTULO 2: TEORÍA DE LA DECISIÓN 
 
 
En este capítulo, abordaremos algunos conceptos de la teoría de 
la decisión. El propósito de esta teoría es comprender la raciona-
lidad de las acciones humanas. Hay al menos dos enfoques sobre 
la teoría de la decisión: en el enfoque deliberativo, el objetivo de 
la teoría es ayudarnos a tomar decisiones, mientras que en el en-
foque explicativo, la teoría explica por qué decidimos lo que de-
cidimos. Más adelante veremos que ambos enfoques tienen sus 
ventajas y desventajas.  
El punto de partida de la teoría de la decisión, sin embargo, es 
normativo. Es decir, la teoría de la decisión no es (al menos en 
principio) una teoría sobre cómo las personas deciden, o de los 
procesos psicológicos o neurológicos involucrados en la toma de 
decisiones. La teoría de la decisión nos muestra cómo las perso-
nas deberían decidir racionalmente, a partir de determinada re-
construcción de los contextos de decisión. 
 
 
Parte A: Matrices, actos y resultados 
 
En la teoría de la decisión, siguiendo el enfoque clásico de Sa-
vage (1954), un contexto de decisión incluye actos y estados del 
mundo. Por ejemplo, yo puedo decidir si salir con paraguas o sin 
paraguas. Los posibles estados del mundo relevantes son si 
llueve o no llueve. Usualmente escribimos estas situaciones en 
una tabla, donde las filas son los actos y las columnas son los 
estados del mundo. 
 

 Llueve No llueve 

Salgo con paraguas   

Salgo sin paraguas   
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Como puede verse, esa tabla está sin completar. Lo que falta es 
describir los posibles resultados, es decir, qué pasaría si toma-
mos determinada decisión en determinado estado del mundo. 
Por ejemplo, la tabla anterior podría completarse así: 

Este procedimiento se ve muy sencillo, y de hecho no tiene por 
qué ser distinto a lo que nos representamos mentalmente al tomar 
una decisión. Típicamente consideramos los posibles escenarios 
antes de actuar. Las condiciones respecto a los actos y los estados 
del mundo no son muchas. Entre ellas: 

1. Los estados del mundo deben ser excluyentes y exhaustivos.
Es decir, siempre va a suceder uno de ellos, y no pueden suce-
der varios a la vez.
2. Los actos deben ser independientes del estado del mundo.
Es decir, tomar un curso de acción no debería afectar la pro-
babilidad de que el estado del mundo ocurra.

Esta última condición fue discutida en distintos contextos, y de 
hecho hay teorías (como la Teoría de la Decisión Causal) donde 
finalmente no se la adopta. Sin embargo, la condición es muy útil 
para representar decisiones cotidianas. En el contexto antes des-
crito, se trata de una condición natural: llevar el paraguas no hace 
más o menos probable que llueva.13 

13 En el habla popular, existen las llamadas “Leyes de Murphy”. Por 
ejemplo: “el carril de al lado siempre es más rápido”, “cuando abras el 
paraguas dejará de llover”, “apenas enciendas el cigarro llegará el bus”, 
etc. Estas “leyes” solo tienen un valor humorístico, no científico. 

Llueve No llueve 

Salgo con paraguas No me mojo Debo cargar el paraguas 
innecesariamente 

Salgo sin paraguas Me termino 
mojando 

No me mojo y no tengo 
que cargar un paraguas 
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Ejercicio 

Julio César tiene que ir a la guerra. Debe decidir cuántos solda-
dos enviar (en particular, si enviar pocos o muchos). No sabe si 
se enfrentará a un ejército grande o pequeño. Pero realiza el si-
guiente razonamiento: 

Gano la guerra Pierdo la guerra 

Envío muchos soldados Victoria Pierdo muchos soldados 

Envío pocos soldados Victoria épica Pierdo pocos soldados 

Al comprender que, en cualquier caso, es mejor mandar pocos 
soldados (un razonamiento que luego llamaremos dominancia), 
Julio César decide enviar pocos soldados.  
¿Por qué es incorrecto su razonamiento? 
¿Cómo debería formular esta matriz de decisión para evitar esta 
falacia? 

Parte B: Decisiones bajo ignorancia 

Teniendo tablas como la de antes, nos alcanza para tomar algu-
nas decisiones. Pero necesitamos un poco más de información. 
Como mínimo, necesitamos saber cuáles son nuestros resultados 
preferidos. Caso contrario, no podríamos decidir qué rumbo de 
acción tomar. 
La teoría de la decisión es fuertemente subjetivista respecto a las 
preferencias. Es decir, la teoría de la decisión no puede decirnos 
cuáles preferencias son “mejores” o “peores”. Sobre eso, cada 
uno tendrá su opinión. Lo único que impone la teoría de la deci-
sión es cierta estructura racional de las preferencias, que nos per-
mitirá luego tomar una decisión racional. En otras palabras, la 
teoría de la decisión nunca nos dirá “deberías hacer esto”, sino 
“dadas tus preferencias, deberías hacer esto”. Algunos autores 
llaman a esto “racionalidad instrumental”. 
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El elemento básico de esa estructura racional es una relación de 
preferencia entre resultados. Es decir, necesitamos un tipo de or-
den que nos indica qué resultados preferimos sobre otros. Usare-
mos el símbolo x ≽ y para representar que el agente encuentra al 
resultado x mejor o igual que el resultado y. Cuando x ≽ y ocurre 
junto con y ≽ x, decimos que x ∼ y (Indiferencia). Y cuando x ≽ 
y pero ¬(y ≽ x), decimos que x ≻ y (Preferencia estricta). 
Estos órdenes de preferencia tienen las siguientes propiedades: 
 

Completitud: Para todos los eventos x e y, se da que x ≻ y, 
o y ≻ x, o x ∼ y.  Es decir, los agentes siempre prefieren un 
resultado sobre otro, o son indiferentes.  
 
Transitividad: Si x ≽ y, y también y ≽ z, entonces x ≽ z. 

 
La completitud establece que todos los agentes tienen preferen-
cias respecto a todos los posibles resultados. Si voy al supermer-
cado a buscar una fruta y hay solo una manzana y una banana, 
puedo preferir la banana, o la manzana, o puede darme igual en-
tre ambas cosas. No hay resultados “incomparables”. 
A la vez, esas preferencias deben ser transitivas. Si de hecho pre-
fiero una banana antes que una manzana, y una manzana antes 
que un durazno, entonces obviamente prefiero una banana antes 
que un durazno. A modo de metáfora, podríamos pensar un orden 
como un edificio con pisos, donde algunas opciones (las preferi-
das) están arriba, otras más abajo, y las menos preferidas en la 
planta baja. Aquí un “piso” puede contener muchas opciones, es 
decir que permitimos la indiferencia entre opciones. 
Es común defender la transitividad a partir de razones de explo-
tabilidad, similares al argumento del Dutch Book. El argumento 
de la bomba de dinero (money-pump argument) nos dice que, si 
nuestras preferencias son cíclicas, un corredor nos puede dejar 
sin dinero (Gustaffson 2022). Porque si preferimos A sobre B, 
podríamos gastar una mínima suma de dinero en obtener A, 
cuando tenemos B. Y si las preferencias tuvieran un ciclo, no 
importa en qué parte del ciclo comenzamos, podríamos gastar 
sumas de dinero para obtener el evento preferible, hasta quedar-
nos sin nada. 
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En un clásico texto, Amartya Sen (1971) muestra que la transiti-
vidad es equivalente a dos condiciones sobre las preferencias: la 
condición α y la condición β. La condición α nos dice que, si 
entre un conjunto A nuestra opción preferida es x, entonces si le 
quitamos elementos a ese conjunto A, no puede cambiar nuestra 
opción preferida. Es decir, si entre {banana, pera, manzana} yo 
prefiero la pera, no puede suceder que entre {banana, pera} yo 
prefiera la banana. La condición β nos dice que, si tanto x como 
z son mis opciones preferidas dentro de A, y agregamos elemen-
tos a ese conjunto, no puede ser que x siga siendo una opción 
preferida, pero z no lo sea (o viceversa).  Es decir, si entre {cho-
colate, vainilla, frutilla} yo prefiero vainilla y chocolate, no 
puede ser que entre {chocolate, vainilla, frutilla, limón} yo pre-
fiera solamente vainilla, o solamente chocolate. 

¿De qué forma podría combinar estos órdenes completos y tran-
sitivos de preferencias para tomar decisiones? Supongamos que 
estoy decidiendo si ir a almorzar al comedor universitario. No 
tengo muy claro qué comida van a servir hoy, pero sé que será 
barato. Mi única alternativa es almorzar en el restaurante tailan-
dés de la esquina, que es delicioso pero caro.  
Podría representar la situación del siguiente modo: 

El comedor sirve 
comida rica 

El comedor sirve 
comida mediocre 

Almuerzo en el 
comedor universitario 

Gasto poco dinero y 
como algo rico 

Gasto poco dinero y 
como algo mediocre 

Almuerzo en 
restaurante tailandés 

Gasto mucho dinero 
y como algo rico 

Gasto mucho dinero 
y como algo rico 

El resultado de almorzar en el restaurante de la esquina no de-
pende de lo que sirva el comedor universitario, por eso será el 
mismo en ambos estados del mundo. Ahora supongamos que lo 
que más me preocupa es el dinero. En ese caso, mis preferencias 
se verán de este modo (donde arriba pongo lo que más prefiero): 



56/ Una introducción a la epistemología formal 

 

Gasto poco dinero y como algo rico 
Gasto poco dinero y como algo mediocre 

Gasto mucho dinero y como algo rico 
 
Vale recordar que en este contexto las preferencias son subjeti-
vas. Nadie está diciendo que gastar mucho dinero para comer 
algo rico sea malo, simplemente estamos representando las pre-
ferencias de un sujeto determinado. 
Desde la perspectiva de ese sujeto, si voy al comedor universita-
rio, me garantizo gastar poco dinero, que es lo que más me im-
porta. En otras palabras, sea cual sea el estado del mundo (sea 
cual sea la comida del comedor), voy a preferir comer allí antes 
que ir al restaurante de la esquina. Según un conocido principio 
de la racionalidad, en estos casos lo que corresponde hacer es ir 
al comedor universitario. Se trata de una decisión dominante. 
 

(Dominancia estricta) Un acto X domina estrictamente 
a un acto Y si y sólo si en cualquier estado del mundo, el 
acto X trae un resultado estrictamente preferible al que 
trae el acto Y.  
 

También diremos, en este caso, que la decisión Y está estricta-
mente dominada. Un acto que domina estrictamente a todos los 
otros actos se llamará dominante. 
En ocasiones también se usa el concepto de dominancia débil, 
que es muy similar al anterior (aunque menos exigente):14 
 

(Dominancia débil) Un acto X domina débilmente a un 
acto Y si y sólo si (a) en cualquier estado del mundo, el 
acto X trae un resultado igual o mejor que el acto Y, y 
además (b) en algún estado del mundo, el acto X trae un 
resultado estrictamente mejor que el acto Y. 

 

 
14 En algunas presentaciones, lo que aquí llamamos “dominancia débil” 
es presentado como “dominancia estricta” (Peterson 2009). 
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En teoría de la decisión, suele asumirse que los agentes no debe-
rían tomar decisiones dominadas. 
 

(Regla de dominancia) La regla de dominancia esta-
blece que los actos dominados son irracionales, es decir, 
debemos elegir acciones que no estén dominadas. 

 
En el ejemplo en cuestión, dadas nuestras preferencias pura-
mente económicas, el acto de ir al comedor universitario es do-
minante, porque domina a la alternativa, que es ir al restaurante 
tailandés. Entonces, según la teoría de la decisión, deberíamos ir 
al comedor universitario. 
Tomando en cuenta que la teoría de la decisión dialoga con la 
filosofía, es natural que todas las reglas de la racionalidad estén 
bajo discusión. Sin embargo, la regla de dominancia es una de 
las más sólidas en cualquier teoría de la racionalidad. Si quiero 
actuar racionalmente, lo mínimo que debo hacer es descartar las 
opciones dominadas. 
 
Decisiones sin dominancia 
En muchas ocasiones, la dominancia no nos ayuda a tomar una 
decisión. Supongamos que tengo que decidir si ir a la playa o al 
cine, pero las consecuencias dependen mayormente del clima. 
Puedo modelar la matriz de decisión de este modo: 
 

 Llueve No llueve 

Ir a la playa Día perdido Mucha felicidad 

Ir al cine Felicidad moderada Arrepentimiento leve 

 
Y supongamos que mi orden de preferencias es el siguiente: 
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Mucha felicidad 
Felicidad moderada 
Arrepentimiento leve 

Día perdido 

Aquí la regla de dominancia no sirve, porque ir a la playa solo es 
preferible a ir al cine cuando no llueve; análogamente, ir al cine 
solo es preferible a ir a la playa cuando llueve. Ningún acto do-
mina al otro. 
Una regla posible para decidir es evitar el peor resultado. En ese 
caso, el peor resultado es ir a la playa y que llueva (“Día per-
dido”). Usando esa regla, lo que debemos hacer es ir al cine. Lla-
mamos a esta regla maximin.  

(Maximin) Entre varios actos, debo elegir aquel cuyo 
peor resultado sea el menos malo (“maximizar el mí-
nimo”). 

La regla maximin es la más conocida para estos contextos de 
poca información. Como veremos más adelante, esta regla carac-
teriza una forma extrema de la aversión al riesgo, y aparece en 
distintas versiones a lo largo de la literatura de la teoría de la 
decisión. De todos modos, vale repetir que no se trata de una re-
gla canónica de la racionalidad, como la regla de dominancia. 
Maximin es simplemente una regla posible para tomar decisiones 
en contextos de escasez informativa. 
Junto con maximin, existen otras reglas posibles para estos con-
textos sin mucha información. Por ejemplo, un agente más “op-
timista” podría elegir el acto donde el mejor resultado sea el me-
jor de todos. En el ejemplo, el agente iría a la playa, esperando 
que salga el sol. A esta regla la llamamos maximax. Existen mu-
chas otras reglas posibles en estos escenarios donde solo tenemos 
un orden de preferencias, aunque aquí no entraremos en detalle 
sobre este tema. 

Ejercicio 



 
Diego Tajer /59 

 

Tengo una cita mañana y planeo adónde llevar a mi pareja. Se 
me ocurre ir al Parque Rivadavia, quedarnos en mi casa viendo 
Netflix o ir a pasear por Recoleta (un barrio con parques y mu-
seos). Pero no sé si va a llover o no. Puedo representar mis pre-
ferencias de este modo: 
 

 Soleado Llueve 

Parque Rivadavia a b 

Netflix en casa c d 

Recoleta e f 

 
El orden de preferencias es a > d > e ∼ c  > f  > b.  

a. ¿Hay alguna acción estrictamente (o débilmente) dominada?  
b. ¿Qué acción nos indicaría la regla Maximax? 
c. ¿Qué acción nos indicaría la regla Maximin? 

Parte C: Escalas de utilidad 
 
En contextos específicos, podemos tener escalas más informati-
vas entre los posibles resultados, que vayan más allá de un simple 
orden. Por ejemplo, podríamos querer informar no sólo que pre-
ferimos tener una casa en las afueras a tener un departamento en 
la ciudad, sino en qué medida nos parece mejor (podría ser do-
blemente mejor, marginalmente mejor, etc.). Para hacer esto, lo 
usual es atribuir números a los posibles resultados, y generar una 
escala donde podamos calcular distancias.  
Usando las nociones de la sección anterior: habrá una función de 
utilidad U que le asigna un número a cada resultado A/E, donde 
A es un acto, y E es un estado del mundo. Por ejemplo, si A es ir 
al cine, y E es que llueve, A/E es la situación donde llueve y 
vamos al cine, y U(A/E) será la utilidad asignada a ese escenario. 
La idea de asignar utilidades a eventos proviene del utilitarismo. 
Para el utilitarismo hedonista de Bentham (1780), que luego fue 



60/ Una introducción a la epistemología formal 

parcialmente adoptado por Mill (1861)15, podemos caracterizar 
un evento a partir de cuánto placer o dolor nos da. Éticamente, 
debemos maximizar el placer de la mayor cantidad posible de 
personas. Para eso, es necesario usar alguna escala que nos sirva 
de “hedonómetro”, es decir, para medir el placer y el dolor de 
determinado evento. 
La teoría de la decisión reformula estas ideas utilitaristas, pero 
las vuelve más manejables técnicamente. La utilidad, según la 
perspectiva usual en teoría de la decisión, ya no indica nuestros 
“puntos de placer”, sino que da información sobre la intensidad 
de las preferencias. Por ejemplo, podríamos ordenar los resulta-
dos del ejemplo anterior del siguiente modo: 

Ir a la playa un día soleado 100 
Ir al cine un día lluvioso  40 
Ir al cine un día soleado  20 
Ir a la playa un día lluvioso 0 

Aquí se mantiene el orden, pero damos más información sobre 
cuánto preferimos la plaza un día soleado antes que ir al cine. 
Otro agente podría ordenar sus preferencias así: 

Ir a la playa un día soleado 100 
Ir al cine un día lluvioso  2 
Ir al cine un día soleado  1 
Ir a la playa un día lluvioso 0 

Este agente tiene el mismo orden de preferencias que el anterior, 
pero no valora mucho ir al cine. Solo lo considera muy levemente 
mejor que ir a la playa un día lluvioso. Lo verdaderamente desea-
ble para este agente es ir a la playa en un día soleado.  
Como vemos, en estas escalas “cardinales” no hay solo un orden, 
sino también distancias. Ahora bien, si lo importante es la dis-

15 El utilitarismo de Mill, a diferencia del de Bentham, presuponía una 
jerarquía de placeres, donde el placer de una noche de cervezas está por 
debajo de placeres superiores, como una noche de ópera. 
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tancia relativa entre los eventos, y no el número preciso que usa-
mos, muchas escalas van a darnos lo mismo. Por ejemplo, tener 
preferencias del tipo (100, 10, 0) podría ser equivalente a tener 
las preferencias (10, 1, 0). Estas equivalencias entre escalas de 
preferencias pueden explicarse con el concepto de transforma-
ción. En general, dos escalas son iguales en términos prácticos 
cuando una es simplemente una transformación de la otra. 
Una transformación de cociente toma los elementos del orden y 
los multiplica por un número positivo a, es decir, f(x) = ax. Por 
ejemplo, podríamos tomar el orden (100, 1, 0) y multiplicarlo por 
2. Nos quedaría (200, 2, 0). Aquí, no solo se mantienen las dis-
tancias relativas, sino también el cociente entre los valores: 100
es 100 veces 1, 200 es 100 veces 2. En términos coloquiales, esto
significa que “achicamos” o “agrandamos” la escala.16

Algo más compleja, pero fundamental en la teoría de la decisión,
es la noción de transformación lineal positiva. Una transforma-
ción lineal positiva de un orden (x1, …, xn) es una multiplicación
de cada elemento de ese orden por una función f(x) = ax + c. En
términos coloquiales, esto significa que además de “achicar” o
“agrandar” la escala (con el elemento a), también podemos “co-
rrer” la escala (con el elemento c). Una consecuencia de esto es
que las escalas transformables linealmente no tienen inicios, fi-
nales o puntos medios “naturales”.
Las transformaciones lineales mantienen las distancias relativas,
aunque no los cocientes. Por ejemplo, (101, 2, 0) es una transfor-
mación lineal positiva de (100, 1, 0), donde corremos el eje so-
lamente un punto (es decir, f(x) = x + 1). Pero el cociente no se
mantiene, porque 101 no es 100 veces 2. Un caso conocido de
transformación lineal es la conversión de grados Farenheit (que
se usan en Estados Unidos) a grados Celsius (que se usan en casi
todo el resto del mundo). Si tengo un número de grados Celsius
x, puedo hacer la conversión usando la fórmula f(x) = 9/5 x + 32.
Por ejemplo, 0 grados Celsius son 32 grados Farenheit. Se trata

16 Además de mantener el cociente, las escalas de cociente (a diferencia 
de las de intervalo) pueden tener un 0 único. En un libro reciente, Na-
rens y Skyrms (2020) utilizan una escala de cociente, donde el 0 separa 
las sensaciones de placer de las sensaciones de dolor. 
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de dos formas de medir la temperatura, que no modifican aquello 
que miden: obviamente en Estados Unidos la temperatura no es 
un fenómeno natural distinto a la temperatura en Argentina.  

Ejercicio 

Tengo cuatro escalas distintas, que reflejan preferencias de cua-
tro agentes: 

Agente 1 Agente 2 Agente 3 Agente 4 

Frutillas 6 30 112 5 

Naranjas 3 15 106 10 

Almendras 2 10 104 2 

Chocolate 1 5 102 1 

a. Encuentre dos escalas que no son equivalentes en términos
ordinales.
b. Encuentre dos escalas equivalentes en términos de cociente
(y la función de transformación correspondiente).
c. Encuentre dos escalas equivalentes en términos de inter-
valo que no son equivalentes en términos de cociente (y la
función de transformación correspondiente).

Parte D: Maximización de utilidad esperada 

Para tomar decisiones informadas no alcanza con tener escalas 
más informativas de preferencias. Además, necesitamos un 
cálculo más preciso sobre los posibles estados del mundo. Para 
este propósito usaremos probabilidades. La teoría de probabili-
dades ya fue explicada en el capítulo anterior. Aquí, lo único que 
nos interesa es que un agente tiene una distribución de probabi-
lidades sobre los posibles estados del mundo. Es decir, cada es-
tado E tiene una probabilidad P(E), que es la probabilidad de que 
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ese estado del mundo ocurra, según la perspectiva del agente. Al 
mismo tiempo, como se trata de una distribución, la suma de las 
probabilidades de los estados del mundo (que son exhaustivos y 
excluyentes) será exactamente 1. De este modo, podemos dar 
más precisiones sobre la forma en que la teoría de la decisión 
entiende los actos. 
Cada acto A tendrá una utilidad esperada U(A). Esta utilidad es 
simplemente la ponderación, teniendo en cuenta las probabilida-
des, de todos los posibles resultados. Es decir, si los estados del 
mundo son E1, …, En, la utilidad esperada del acto A se puede 
calcular así: 
 

U(A) = P(E1) × U(A/E1) + … + P(En) × U(A/En) 
 
Por ejemplo, supongamos que la probabilidad de que llueva es 
60%, o 0.6, y que nuestra escala de utilidad es la que definimos 
antes: 
 

 Llueve (p = 0.6) No llueve (p = 0.4) 

Ir al cine 40 20 

Ir a la playa 0 100 

 
Entonces la utilidad de ir al cine será: 
 

U(Ir al cine) = 0.6 × 40 + 0.4 × 20 = 24 + 8 = 32 
 
Por otro lado, la utilidad de ir a la playa es: 

 
U(Ir a la playa) = 0.6 × 0 + 0.4 × 100 = 0 + 40 = 40 

 
Es decir, en este escenario, la utilidad de ir a la playa es 40, y la 
utilidad de ir al cine es 32. La regla de racionalidad más utilizada 
en la teoría de la decisión nos indica que debemos realizar el acto 
que nos otorgue la máxima utilidad esperada. En este caso, de-
bemos ir a la playa. 
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Maximización de utilidad esperada: Un agente racional 
debe realizar el acto que maximiza la utilidad esperada. 

La maximización de utilidad esperada es la regla fundamental de 
la teoría de la decisión, cuando tenemos probabilidades y utilida-
des. Naturalmente, esta regla implica la regla de dominancia 
(dejo la prueba a cargo del lector), aunque no necesariamente 
implica otras reglas que hemos mencionado. Por ejemplo, la re-
gla de maximizar la utilidad esperada no implica maximin: si el 
peor escenario fuera muy improbable, no tenemos por qué foca-
lizarnos en ese escenario al tomar una decisión (en el escenario 
anterior, maximin nos indicaría ir al cine). 
Un resultado interesante nos indica que, al tomar una decisión 
por maximización, la transformación lineal positiva uniforme de 
las utilidades nos va a arrojar el mismo resultado17. Es decir, la 
decisión correcta no depende de los números, sino de las distan-
cias relativas entre los posibles resultados.  

Dinero y utilidad 
¿Cuál es la relación entre la utilidad y los bienes materiales? En 
teoría de la decisión, generalmente asumimos que el dinero no 
tiene un valor lineal (y lo mismo aplica, en general, a otros bienes 
materiales). Es decir, la función de utilidad no es de tal forma 
que U($x) = x. Tampoco puede representarse con otra función 
lineal, como U($x) = 5x + 10. Decimos que el dinero tiene una 
utilidad marginal decreciente: mientras más dinero tenemos, 
menos nos significa ganar un poco más.  
En otras palabras, si alguien gana 100 dólares mensuales, ganar 
120 seguramente le significará una diferencia muy sustantiva. En 
cambio, si alguien gana 12.000 dólares mensuales, ganar 12.020 
no le va a significar una utilidad mucho mayor.  
En realidad, la teoría marginal del dinero proviene de una famosa 
paradoja de la teoría de la decisión, conocida como Paradoja de 

17 Esto se debe a que si x > y, ax + c > ay + c (asumiendo que a es 
positivo). Es decir, multiplicar por un número positivo, y sumar/restar 
lo mismo a ambos lados, no puede cambiar el signo de la inecuación. 
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San Petersburgo. La paradoja se basa en un juego: se tira una 
moneda, y si sale “cara” el agente gana $2. En cambio, si sale 
“cruz”, se vuelve a tirar la moneda. Ahora bien, si en el segundo 
tiro sale “cara”, el agente gana $4. Si sale “cruz”, se vuelve a 
tirar. En el tercer tiro, si sale “cara”, el agente gana $8. Si sale 
“cruz”, vuelve a tirar. Y así sucesivamente. Es decir, si la moneda 
sale “cara” en el turno n, el agente obtiene $2n. Una pregunta que 
podríamos hacernos ahora es cuánto dinero es razonable pagar 
por entrar en ese juego. Lo cierto es que el valor monetario espe-
rado de la apuesta es el siguiente: 
 

½ × $2 + ¼ × $4 + ⅛ × $8 + … = $1 + $1 + $1 + ... = $∞ 
 
En otras palabras, el valor monetario de esta apuesta es infinito. 
Guiado por el valor monetario, yo debería pagar todo lo que 
tengo para jugar al juego de San Petersburgo. Obviamente, esto 
es absurdo. Por eso la conclusión de esta paradoja es que el valor 
de una apuesta no es su valor monetario. De hecho, el valor de 
una apuesta suele ser mucho menor a su valor monetario. Esto se 
debe, justamente, a la utilidad marginal decreciente del dinero.  
Según Daniel Bernoulli (1700-1782)18, la utilidad del dinero es 
una función U($x) que usualmente se comporta de forma logarít-
mica. Para simplificar, podríamos decir que U($x) = ln(x + 1). Es 
decir, la utilidad de $5 será 1.79, y la de $10 será 2.39. Pero la 
utilidad de $40 será 3.71. Como vemos, multiplicar el dinero no 
multiplica la utilidad al mismo ritmo. Siempre tener más dinero 
aumenta la utilidad, pero el aumento no es lineal.19  

 
18 La paradoja como tal fue descubierta por Nickolaus Bernoulli (1687-
1759), primo de Daniel Bernoulli, y sobrino de Jakob Bernoulli, a quien 
ya mencionamos como descubridor de la Ley de Grandes Números.  
19 Podríamos ver a la utilidad marginal decreciente del dinero como 
una ley entre otras que relacionan lo objetivo (cantidad de dinero) con 
lo subjetivo (cantidad de utilidad) usando funciones logarítmicas. Otra 
medida de este tipo son los decibeles. 
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En otros contextos, llamamos adversas al riesgo a las personas 
cuya utilidad es tal que U($x) < x. Suele asumirse que todos los 
agentes son, en mayor o menor medida, adversos al riesgo. Pen-
semos en apuestas como la siguiente: 
 

Acción 1: Me dan mil dólares. 
Acción 2: Tiro una moneda. Si sale cara, me quedo sin nada. Si 
sale cruz, me dan dos mil dólares. 

 
El valor monetario esperado (VM) de la acción 2 es igual al valor 
monetario esperado de la acción 1, pues VM(Tirar moneda) = 
0.5 × $0 + 0.5 × $2000 = $1000. Sin embargo, en encuestas y 
contextos experimentales, las personas en su inmensa mayoría 
prefieren la acción 1 sobre la acción 2. Una forma de explicar 
este fenómeno es justamente apelar a la noción de aversión al 
riesgo: la utilidad de la acción 1 es U($1000), pero la utilidad de 
la acción 2 es 0.5 × U($0) + 0.5 × U($2000). Y como antes seña-
lamos, dos mil dólares no representan el doble de utilidad que 
mil dólares.  
Vale aclarar, sin embargo, que la utilidad marginal decreciente 
del dinero no es un principio esencial de la teoría de la decisión. 
Simplemente es una premisa que suele sostenerse en la mayoría 
de los contextos. Pero podría haber otros contextos donde las 
personas, en lugar de ser adversas al riesgo, sean propensas al 
riesgo. 
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Ejercicios  
 
1. Debo ir a un congreso en un distrito que queda a 800km, pero 
anuncian mal clima para esa semana. Me debato sobre qué hacer. 
 

 Día normal 
(p = 0.4) 

Lluvias 
(p = 0.5) 

Tormenta  
(p = 0.1) 

Ir en avión 40 20 -20 

Ir en bus 20 40 20 

No ir 0 10 150 

¿Qué recomendaría la maximización de utilidad esperada? 
 
2. Tengo que elegir entre dos apuestas, ambas tirando un dado. 
A1: Si sale 1 o 2, gano $121. 
A2: Si sale 1, 2 o 3, gano $49. 
 
a. ¿Qué debo elegir si la utilidad del dinero es lineal, es decir, si 
U($x) = x? 
b. ¿Qué debo elegir si U($x) = ln(x + 1)? 
c. ¿Qué debo elegir si U($x) = √x	? 

 
3. Llegan los postres y hay muchos chocolates. Me gusta el cho-
colate, pero tengo problemas estomacales, de modo tal que no 
debería comer demasiados (más de 8 o 9 ya me traen problemas). 
El anfitrión me ofrece decidir entre dos acciones: comer una caja 
grande (9 chocolates) o una pequeña (6 chocolates). 
Personalmente, prefiero los chocolates blancos. 
Ahora bien: hay 0.6 probabilidades de que me traiga chocolates 
negros, y 0.4 de que traiga chocolates blancos.  
Siendo x la cantidad de chocolates que como, supongo que la 
utilidad de los blancos es [10 - (x - 7)2], y la de los negros es [8 - 
(x - 7)2].  ¿Debo elegir la caja grande o la pequeña? 
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Parte E: El Teorema von Neumann-Morgenstern 
 
Como señalamos anteriormente, la noción contemporánea de uti-
lidad proviene del concepto desarrollado por utilitaristas como 
Bentham, pero el enfoque es radicalmente distinto. Von Neu-
mann y Morgenstern, en su influyente libro Theory of Games and 
Economic Behavior (1944), mostraron que uno puede construir 
una escala de preferencias cardinal al observar las preferencias 
de los agentes sobre determinadas “loterías”. 
Una lotería, en este sentido técnico, es una situación donde po-
drían suceder distintos hechos con distintas probabilidades, y to-
das ellas suman 1. Una lotería podría ser tirar una moneda (50% 
cara, 50% cruz) o también salir sin paraguas un día nublado (40% 
llego mojado al trabajo, 60% llego seco al trabajo). Mostraremos 
ahora, de forma intuitiva, cómo construir una escala de preferen-
cias de intervalo a partir de las preferencias sobre loterías. 
Supongamos que un agente debe ir al cine a ver una película de 
Pixar. En principio, sus preferencias son Toy Story ≻ Moana ≻ 
Cars. Para comprender la utilidad que le asigna a cada escenario, 
le ofrecemos las siguientes loterías: 
 

- Ver Moana con 100% de probabilidad 
- Ver Toy Story con 80% de probabilidad, y Cars con 20% 

Supongamos que ambas loterías le son indiferentes al agente. 
Con esto, sin suponer ninguna utilidad en particular, podemos 
armar una suerte de escala: 
 

1 × U(Moana) = 0.8 × U(Toy Story) + 0.2 × U(Cars) 
 
Ahora estipulamos que el mejor resultado vale 100, y el peor vale 
0 (esto podemos estipularlo con cualquier número, porque solo 
nos importan los intervalos). Como señalamos al principio, el 
mejor resultado para el agente es Toy Story, y el peor es Cars. 
Entonces podemos calcular la utilidad de ver Moana: 
 

U(Moana) = 0.8 × 100 + 0.2 × 0 = 80 
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La escala entonces queda así: 

Toy Story 100 
Moana 80 
Cars 0 

Debería ser claro que no importan los valores que ponga, en tanto 
y en cuanto use escalas que sean equivalentes bajo transforma-
ción lineal positiva, es decir, en tanto se mantengan las distan-
cias entre los puntos. La escala aquí es (100, 80, 0), pero podría 
ser (10, 8, 0), o (11, 9, 1), etc. 
Veamos ahora cómo podemos armar una escala incluso más in-
formativa. Supongamos que al agente en cuestión le ofrecen ver 
Coco. Coco le gusta más que Moana, pero menos que Toy Story. 
Pero eso no alcanza para armar una escala de intervalo. Para sa-
ber el lugar preciso de Coco entre Moana y Toy Story necesito 
saber esto: ¿con qué valor de p le daría igual ver Coco seguro, o 
ver Toy Story con probabilidad p y Moana con probabilidad (1-
p)? Supongamos que ese valor es 0.7. Es decir:  

U(Coco) = 0.7 × U(Toy Story) + 0.3 × U(Moana) 

Ahora podemos usar la escala de utilidad anterior: 

U(Coco) = 0.7 × 100 + 0.3 × 80 = 70 + 24 = 94 

Entonces la nueva escala tiene a Coco con 94. 
Así, puedo establecer la escala de utilidad de un agente a partir 
de sus preferencias respecto a un conjunto determinado de apues-
tas. Esta es la esencia conceptual del teorema de Von Neumann 
y Morgenstern. Ahora veremos el teorema con más detalle. 

*Enunciado del Teorema von Neumann-Morgenstern
En la versión completa del problema, el agente elige entre lote-
rías. Usaremos esta terminología: “ApB” es una lotería donde
sale A con probabilidad p, y B con probabilidad (1 - p).
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Hay cuatro axiomas para las preferencias:20 
 

- Completitud (véase sección B de este capítulo) 
- Transitividad (véase sección B de este capítulo) 
- Independencia: A ≻ B si y sólo si ApC ≻ BpC. 
- Continuidad: Si A ≻ B ≻ C, entonces hay probabilidades p y q 
(mayores a 0 y menores a 1) tales que ApC ≻ B y B ≻ AqC. 

 
El axioma de Independencia quiere decir, a grandes rasgos, que 
agregar opciones irrelevantes no debería cambiar mi preferencia 
sobre las loterías. Por ejemplo: si prefiero Cars a Pocahontas, 
prefiero Cars con 80% y Aladdin con 20%, a Pocahontas con 
80% y Aladdin con 20%.   
El axioma de Independencia nos prohíbe elegir sobre loterías en 
virtud de propiedades globales. Por ejemplo, si me fijo en pro-
piedades globales, podría preferir una lotería entre películas del 
mismo estilo; entonces una lotería entre Pocahontas y Aladdin 
(dos películas 2D) sería mejor que una lotería entre Cars y Alad-
din (Cars es 3D y Aladdin es 2D). Esta consideración de propie-
dades globales de las loterías violaría Independencia. 
El axioma de Continuidad es más controversial, y una forma de 
leerlo es que nuestros órdenes de preferencias deben ser “conti-
nuos”, sin saltos. Podemos ignorar escenarios negativos si su 
probabilidad es suficientemente baja, y no podemos ignorarlos si 
su probabilidad es suficientemente alta.  
Un ejemplo del axioma de Continuidad es lo siguiente. Si A es 
obtener $10.000, B es obtener $9.000 y C es no obtener nada, 
obviamente prefiero A ≻ B ≻ C. Ahora veamos cómo opera la 
continuidad.  Supongamos que tengo que elegir entre tirar una 
moneda y obtener $10.000 (si sale “cara”) y $0 (si sale “cruz”), 
u obtener $9.000 en mano: 
 

Lotería 1: $9.000 (B) seguro.  
Lotería 2: 50% de chances de $10.000 (A), 50% de nada (C). 

 
20 También se requiere que las loterías compuestas puedan ser reduci-
das a loterías simples. Por razones de complejidad, no entramos en de-
talle sobre este asunto aquí. 
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La mayor parte de la gente preferirá la lotería 1. Eso podría ilus-
trar un q donde B ≻ AqC, siendo q = 0.5. Pero ahí la probabilidad 
de ganar el máximo premio es 0.5. ¿Qué pasaría si la probabili-
dad de sacar $10.000 fuera más alta? Lo que nos dice el axioma 
de Continuidad es que hay una probabilidad p < 1 (supongamos, 
0.99) según la cual prefiero $10.000 con probabilidad p antes que 
$9.000 seguro. En ese caso, ApC ≻ B. 
Una forma equivalente de formular el axioma de Continuidad es 
decir que, si A ≻ B ≻ C, existe una probabilidad p tal que ApC 
∼ B. Este principio, como antes vimos, es fundamental para “ca-
librar” la escala de utilidad. 
El principio de Continuidad contradice al “efecto de certeza” del 
que hablaron psicólogos como Kahneman, quien afirma que una 
probabilidad de 100% (es decir, algo seguro) tiene un efecto que 
va más allá del cálculo de las probabilidades. También la Conti-
nuidad se opone a la noción general de maximin: por más malo 
que sea el peor resultado, podemos anularlo a fines prácticos 
cuando la probabilidad es suficientemente baja. Esto no significa 
que el axioma de Continuidad sea poco realista; por el contrario, 
nos seguimos yendo de vacaciones a la playa aun cuando sabe-
mos que hay una chance (mínima) de tener un accidente en el 
camino. Sería irracional dejarnos llevar por el peor resultado po-
sible, que es lo que propone maximin. 
Ahora podemos mencionar el enunciado del teorema de repre-
sentación de von Neumann-Morgenstern: 
 
Teorema von Neumann-Morgenstern: Una relación ≻ de prefe-
rencia sobre loterías satisface los cuatro axiomas (Completitud, 
Transitividad, Independencia y Continuidad) si y solo si existe 
una función u que va de loterías a números reales en [0,1], y que 
tiene las siguientes propiedades: 
 

1. Una lotería preferible tendrá mayor utilidad: 
L1 ≻ L2 sii u(L1) > u(L2)   
2. La utilidad de una lotería se calcula a partir de su utilidad 
esperada: u(ApB) = p × u(A) + (1 - p) × u(B) 
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Asimismo, esa función u será única bajo transformación lineal 
positiva (i.e., toda función que satisface 1 y 2 es una transforma-
ción lineal positiva de u). La prueba no la haremos aquí, porque 
excede la complejidad de este libro (véase Peterson 2009, Apén-
dice B). Pero podríamos resumir el resultado de este modo: si un 
conjunto de preferencias de un agente sobre loterías o actos sa-
tisface los axiomas antes mencionados, el agente puede ser re-
presentado como maximizador de utilidad. 
 
Ejercicios 
 
1. Supongamos que prefiero helado de chocolate sobre helado de 
frutilla, y helado de frutilla sobre helado de banana. Pero soy in-
diferente entre comer helado de frutilla seguro, y una apuesta con 
60% de helado de chocolate y 40% helado de banana.  
¿Cuál es mi escala de intervalo si la utilidad de comer helado de 
chocolate es 70 y la de helado de banana es 10? 
 
2. Supongamos que un agente es extremadamente averso al 
riesgo. El valor de una lotería es el valor del peor resultado posi-
ble (sin importar su probabilidad). Probar que viola el axioma de 
Independencia. 
 
3. Supongamos que un agente tiene una escala lexicográfica de 
preferencias, donde prefiere un celular iPhone a un Android, sin 
importar el modelo. Asimismo, el agente prefiere un iPhone se-
guro (por más malo que sea) a cualquier lotería donde sea proba-
ble tener un Android. Probar que viola Continuidad. 
 
Parte F: Utilidad conductual y utilidad sustantiva 
 
El teorema Von Neumann-Morgenstern estableció una nueva or-
todoxia en la teoría de la decisión, según la cual podemos extraer 
las utilidades a partir de las preferencias reveladas en la acción. 
Esto llevó a una aceptación casi universal entre economistas de 
que la teoría de la decisión tiene un poder esencialmente expli-
cativo: observando la conducta ajena, podemos inferir usando la 
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teoría de la decisión cuáles son las preferencias o creencias de 
los agentes, y luego predecir su conducta futura. Una versión de 
este enfoque más común en las ciencias económicas es la Teoría 
de la Preferencia Revelada, generalmente atribuida a Paul Sa-
muelson (1938). Según Samuelson, la preferencia se revela en la 
acción, y no hace falta apelar a una teoría psicológica de la utili-
dad para entender la conducta racional. 
Suele llamarse a esta lectura interpretación conductual de la teo-
ría de la decisión. La interpretación conductual tiene muchas 
ventajas: entre otras cosas, para entender las creencias o deseos 
de los otros, no nos importa tanto lo que las personas dicen que 
quieren o que piensan, sino lo que realmente hacen. De ahí po-
demos inferir sus preferencias. Esto evita tendencias “paternalis-
tas”, donde el teórico decide qué es lo que los agentes prefieren 
“realmente” sin tomar en cuenta lo que hacen. El enfoque con-
ductual también permite predecir en vista de las elecciones pasa-
das, en base a la consistencia de las preferencias. Por último, el 
aparato matemático de la teoría de la decisión me permite inferir 
patrones de decisión más “finos” que los que pueden expresarse 
verbalmente (Thoma 2021).  
El enfoque conductual recibió numerosas críticas, aunque no to-
das apuntan a los mismos problemas. Un problema de la teoría 
conductual (Ostapiuk 2022) es que reduce la irracionalidad a ca-
sos de violación de los axiomas (por ejemplo, elegir una manzana 
entre {manzana, pera} pero una pera entre {manzana, pera, ba-
nana}). Sin embargo, “racionaliza” casos cotidianamente consi-
derados irracionales, como una persona que desea dejar de fu-
mar, pero sigue fumando. Dentro del enfoque conductual, si el 
agente sigue fumando es porque evidentemente prefiere el placer 
a corto plazo, y actúa racionalmente. Becker y Murphy (1988, p. 
675) sostienen que “las adicciones, incluso las más fuertes, son 
racionales”. Otro problema es que, en ocasiones específicas, las 
elecciones no parecen revelar una preferencia real. En la para-
doja del asno de Buridan, un asno debe elegir si tomar una fruta 
que cuelga a la derecha o la izquierda, pero es indiferente entre 
ambas. En la paradoja original, el asno (sin poder decidir racio-
nalmente) muere de hambre. Pero supongamos que no es tan 
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tonto, y toma una de las frutas. Aunque es indiferente entre am-
bas, cualquiera sea la fruta que tome, su “preferencia revelada” 
dirá que prefiere una sobre la otra (Sen 1973, p. 248). Por último, 
la teoría conductual no puede explicar conductas donde violamos 
los axiomas, como cuando decidimos en base a propiedades 
“globales” (Dietrich & List 2016). 
Una interpretación alternativa de la teoría de la decisión, mucho 
más común entre filósofos que entre economistas, es la interpre-
tación sustantiva (a veces llamada “mentalista” o “realista”). 
Esta lectura proviene del utilitarismo de Bentham, y del enfoque 
original de Bernoulli. Para Bentham, como antes mencionamos, 
la “utilidad” de una acción puede medirse según la cantidad de 
placer o felicidad que provoca. La versión más usual de la teoría 
sustantiva sigue siendo subjetivista, y nos dice que la utilidad es 
un estado mental correlacionado pero no idéntico a las decisiones 
que tomamos. Por ejemplo, Hausman (2012) propone que la uti-
lidad debería definirse a partir de nuestros juicios subjetivos so-
bre qué es lo mejor para nosotros. Entonces, maximizar la utili-
dad consiste en maximizar lo que nos parece mejor (o lo que nos 
da más placer, felicidad, etc.). 
Bermúdez (2009) propone que la teoría sustantiva tiene algunas 
ventajas explicativas. En primer lugar (p. 49), la teoría nos per-
mite dar una recomendación normativa más clara: debes maxi-
mizar tu utilidad. Mientras que la teoría conductual solo pres-
cribe mantener la consistencia con conductas pasadas; pero este 
criterio no podríamos aplicarlo en situaciones nuevas. En se-
gundo lugar (p. 50), la teoría sustantiva es más compatible con 
los cambios de preferencias: lo que en un momento nos da placer 
o felicidad, en otro momento podría dejar de hacerlo.
Por último, el enfoque sustantivo nos permite recoger casos in-
tuitivos de irracionalidad, como el fumador compulsivo que
mencioné anteriormente: podríamos decir que el fumador com-
pulsivo es irracional porque no lleva a cabo lo que él mismo con-
sidera conveniente (un fenómeno conocido como akrasía).
La teoría sustantiva es más común en textos de filosofía, donde
se postula a un agente con la capacidad de “entender” sus propias
preferencias, y de decidir qué hacer a partir de eso. Pettigrew
(2019, p. 15), por ejemplo, adopta la lectura sustantiva porque le
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interesa “dar una teoría de la decisión que podríamos usar real-
mente para deliberar sobre decisiones que tomamos, y que clari-
fica las razones que motivan y justifican las decisiones que to-
mamos como resultado de la deliberación”. De hecho, los filóso-
fos suelen adoptar la interpretación sustantiva sin mayores acla-
raciones (Okasha 2016). 
Algunos autores intentaron reconciliar la preferencia revelada 
del enfoque conductual con la preferencia “genuina” de las teo-
rías sustantivas. Gauthier (1986, p. 28) sostiene que podemos ha-
cerlo al apelar a la preferencia considerada. Una preferencia es 
“considerada” cuando el agente, además de actuar de acuerdo 
con ella, también la acepta reflexivamente (esto excluye conduc-
tas compulsivas); lo racional, según Gauthier, sería seguir nues-
tras preferencias consideradas. Otros autores, como Hausman y 
McPherson (2009), sostuvieron que la conducta no puede identi-
ficarse con la utilidad (las personas a veces actúan en contra de 
su beneficio), pero es la mejor evidencia de lo que cada uno 
quiere; por lo tanto, el enfoque conductual no es metodológica-
mente incorrecto para sus aplicaciones usuales. 
 
Parte G: La Paradoja de Allais 
 
En el año 1953, el economista Maurice Allais elaboró una obje-
ción contra la idea de racionalidad como maximización de utili-
dad esperada. Quizás hasta el día de hoy, la “Paradoja de Allais” 
sea la mayor paradoja contra la teoría estándar de la decisión. 
Lo que hoy conocemos como “Paradoja de Allais” se extrae de 
un conjunto de charlas y artículos de Allais a principios de los 
años 50. En uno de esos textos, se incluye una encuesta con mu-
chas preguntas. Allais publicó las preguntas, pero no el resultado 
de las encuestas en el texto original (Allais 1953b). De hecho, lo 
que se discute actualmente respecto al artículo de Allais es solo 
un conjunto pequeño de preguntas de ese cuestionario. 
Uno debe elegir entre distintas loterías (en el sentido usual de la 
palabra), cada una de ellas con 100 tickets, que te dan distintos 
premios según el ticket que salga.  
En la primera pregunta, te dan a elegir entre dos loterías A1 y 
A2. La lotería A1 te da 1 millón en todos los casos, mientras que 
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la lotería A2 te da 5 millones si salen los tickets del 2 al 11, y 1 
millón si salen los tickets del 12 al 100: 21 
 

 1 2-11 12-100 

A1 1 millón 1 millón 1 millón 

A2 0 5 millones 1 millón 

 
Mayormente la gente elige A1 sobre A2, porque te da 1 millón 
de dólares seguro. Esto, en principio, no contradice la maximi-
zación de utilidad esperada; por el contrario, solo muestra que la 
utilidad del dinero es marginalmente decreciente. 
En la segunda pregunta, tenemos que elegir entre estas dos lote-
rías: 

 
 1 2-11 12-100 

A3 1 millón 1 millón 0 

A4 0 5 millones 0 

 
Aquí también, la gente mayormente elige la lotería 4 sobre la 3. 
Básicamente porque tiene casi las mismas chances de hacerse 
millonario, pero con el quíntuple de dinero. Esta decisión, to-
mada por sí sola, tampoco viola la teoría estándar. 
Sin embargo… ¡tener esas preferencias en conjunto es inconsis-
tente! 
Es decir, no importa cuál sea la utilidad del dinero, uno no puede 
preferir A1 sobre A2 y A4 sobre A3. 
Veamos cómo se calculan las utilidades de A1 y A2. 
 
U(A1) = 1/100 × U($1M) + 10/100 × U($1M) + 89/100 × U($1M) 

 
21 Suponemos que los valores están en dólares. En ciertas monedas un 
millón podría valer muy poco, y cambiaría el sentido del problema. 
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U(A2) = 1/100 × U($0) + 10/100 × U($5M) + 89/100 × U($1M) 

Si A1 > A2 eso significa que: 

1/100 × U($1M) + 10/100 × U($1M) + 89/100 × U($1M) > 
1/100 × U($0) + 10/100 × U($5M) + 89/100 × U($1M) 

Tachando idénticos a ambos lados, obtenemos que: 

(*) 1/100 × U($1M) + 1/10 × U($1M) > 
1/100 × U($0) + 1/10 × U($5M)   

Pero esto nos impone cierto orden respecto a A3 y A4, pues: 

U(A3) = 1/100 × U($1M) + 1/10 × U($1M) + 89/100 × U($0) 
U(A4) = 1/100 × U($0) + 1/10 × U($5M) + 89/100 × U($0)  

El tercer término podemos ignorarlo si comparamos A3 con A4. 
Pero entonces la inecuación (*) resultará en que A3 > A4. Esto 
contradice lo que elige la mayoría de la gente. 
En resumen, lo que establece la paradoja de Allais es que la ma-
yoría de la gente toma decisiones que contradicen el principio de 
maximización de utilidad.  Esto es independiente de la escala de 
utilidad que tenga el agente. 
Una forma de leer la paradoja es como una refutación del princi-
pio de Independencia. Si ignoramos los casos de 12-100, ambos 
escenarios son idénticos (un millón seguro vs. 10/11 de probabi-
lidad de 5 millones). Pero las personas dan respuestas opuestas 
cuando agregamos un evento adicional (12-100); esto se debe, 
intuitivamente, a la existencia de un “resultado seguro” en A1, 
que no está presente en A3.  
Allais pretendía criticar tajantemente la teoría de la decisión ra-
cional de Von Neumann, Morgenstern y otros. Para Allais, esta 
paradoja demuestra que el enfoque “americano” (es decir, el es-
tándar) ignora lo que significa ser un agente racional. Entre otras 
cosas, porque un agente racional o prudente no va a satisfacer 
axiomas como Continuidad: para un agente racional, es mejor 
algo seguro que la probabilidad de algo mejor, sin importar cuál 
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sea esa probabilidad. Allais (1953a, p. 504) observa la importan-
cia de la dispersión de las posibilidades (por ejemplo, la cantidad 
de posibilidades que aparecen con un determinado acto), algo 
que la teoría estándar de la decisión no puede capturar.  
Para economistas como Savage, representantes de la escuela 
americana, la paradoja muestra que el principio de maximización 
de utilidad no describe el comportamiento, sino que establece 
cómo un individuo racional debería comportarse. En ese sentido, 
que mucha gente haya fallado en el cuestionario muestra lo difí-
cil que es comportarse racionalmente. Esta distinción entre lo 
normativo y lo descriptivo estará de fondo en la disciplina de la 
economía del comportamiento, que en aquellos momentos recién 
estaba naciendo. De hecho, es interesante mencionar que Kahne-
man y Tversky (1979), los más célebres impulsores de la econo-
mía del comportamiento, comprobaron empíricamente las ideas 
de Allais (para ciertos valores de las apuestas). 
En resumen, podríamos decir que Allais intentó refutar los prin-
cipios de la escuela “americana”, pero sus argumentos no fueron 
convincentes para la mayoría de los economistas. La escuela clá-
sica o americana terminó volviéndose hegemónica, y la paradoja 
sirvió para distinguir entre una lectura descriptiva (pero difícil de 
defender) y una lectura normativa de la teoría de la decisión, mu-
cho más aceptada. 
 
Ejercicio 
 
Si la utilidad del dinero fuera U(x) = ln(x+1), ¿qué eligiría un 
agente racional en el escenario planteado por Allais?  
 
 
Parte H: La Paradoja de Ellsberg 
 
Así como la Paradoja de Allais se cuestiona el axioma de Inde-
pendencia, la Paradoja de Ellsberg (Ellsberg, 1961) nos indica 
que la teoría de la decisión estándar no es capaz de comprender 
la incertidumbre sobre probabilidades.  
En la paradoja, tengo una urna, donde sé que hay 30 bolas rojas, 
y otras 60 que algunas son amarillas y otras negras. 
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R = 30 
A ∨ N = 60 

Debo decidir entre dos apuestas (con valores en dólares): 

A1: $100 si sale una bola roja 
A2: $100 si sale una bola amarilla 

En general, la gente va a elegir A1, porque seguro la probabilidad 
es 1/3 (y no menos). 
Después, deberías elegir entre estas dos apuestas: 

A3: $100 si sale una roja o negra 
A4: $100 si sale una amarilla o negra 

Aquí, por el mismo criterio, la gente va a elegir A4, porque se-
guro la probabilidad será 2/3 (y no menos). 
Pero este conjunto de decisiones es irracional. Porque, suponga-
mos que a es el número de bolas amarillas en la urna, y que u es 
la utilidad de $100. Entonces: 

U(A1) = 1/3 u 
U(A2) = a/90 u 

Supongamos que A1 > A2. 
Entonces 1/3 u > a/90 u, y esto implica que a < 30. 
Ahora, sea n la cantidad de bolas negras en la urna. 

U(A3) = (n/90) u + 1/3 u 
U(A4) = 2/3 u 

Por el resultado anterior (a < 30), n debe ser mayor a 30, y por 
eso U(A3) será mayor a 2/3 u. Por lo tanto, debo elegir A3 sobre 
A4. Lo contrario a lo que hacen las personas. 
Según Ellsberg, este caso muestra que la incerteza no siempre 
puede ser representada como una probabilidad (especialmente en 
casos de escasez informativa, que él llama “ambigüedad”). La 
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paradoja fue confirmada por algunos psicólogos experimentales, 
aunque las decisiones van a depender fuertemente de las proba-
bilidades asignadas (MacCrimmon & Larsson 1978). Luego del 
desafío planteado por Ellsberg, distintos autores han intentado 
desarrollar versiones más sofisticadas de la teoría de la decisión, 
que sean capaces de representar este tipo de “incerteza”. 
 
Teoría del riesgo epistémico 
Según la teoría del riesgo epistémico, podemos distinguir dos ti-
pos de incertidumbre: cuando conocemos las probabilidades y 
cuando solo conocemos las posibilidades. Por ejemplo, si esta-
mos en un partido de tenis, no es lo mismo saber que dos juga-
dores son igual de buenos, que no tener idea de quién es ninguno 
de ellos. En ambos casos nos negaríamos a apostar a favor de 
algún jugador, pero nuestras razones son distintas. 
La idea de este enfoque desarrollado en los 70’ (Levi 1974), pero 
muy popular en las últimas décadas, es que podemos representar 
la meta-incertidumbre usando “rangos” de probabilidades. Por 
ejemplo, si mi conocimiento sobre los jugadores de tenis es nulo, 
la probabilidad de que gane el Jugador 1 podría ser desde 0 hasta 
1. Pero tal vez yo sé que ese jugador es “bueno” y el otro “no es 
tan bueno”, entonces la probabilidad de que gane el Jugador 1 
podría ser un rango entre 0.6 a 1. En cualquier caso, mi estado 
epistémico queda definido no por una asignación de probabilida-
des, sino por un conjunto de asignaciones de probabilidad. 
La pregunta entonces es: ¿cómo debería comportarme en estos 
casos? La respuesta de Levi es, esencialmente, que tenemos que 
guiarnos por la aversión al riesgo. Para ejemplificar, podemos 
distinguir entre tres situaciones epistémicas: 
 

Situación 1: Sé que los dos jugadores son igual de buenos. 
Situación 2: Sé que uno es mucho mejor que el otro (0.9 pro-
babilidades de ganar) pero no sé cuál es cuál. 
Situación 3: No tengo la más pálida idea de lo que estoy 
viendo. 

 



 
Diego Tajer /81 

 

La apuesta es la siguiente: Si gana el jugador que elijo, obtengo 
una utilidad de 2; si pierde el jugador que elijo, pierdo una utili-
dad de 1. No apostar me da una utilidad de 0. 
Entonces, ¿en qué escenarios debería tomar la apuesta? 
En la situación 1, la utilidad de la apuesta es 0.5 × 2 + 0.5 × (-1) 
= 1 - 0.5 = 0.5. Entonces me conviene tomarla. Hasta aquí usa-
mos simplemente la teoría estándar. 
En la situación 2, tengo dos asignaciones posibles de probabili-
dad en mente: que gane el jugador A con .9, o que gane el jugador 
B con .9. Es decir, podría haber dos casos. Considero solamente 
el peor:  
 

Caso en que elijo al equivocado: 0.1 × 2 + 0.9 × (-1) = .2 - 0.9 = -0.7 
 
Entonces, usando el criterio de maximin para utilidades espera-
das, en esta situación no me conviene tomar la apuesta.  
En la situación 3, hay infinitos casos, así que simplemente debo 
usar maximin usual. De este modo, me conviene no apostar. 
Es decir, la meta-incertidumbre me lleva a actuar racionalmente 
con una máxima general de aversión al riesgo. Este método 
puede explicar el comportamiento usual en la paradoja de Ells-
berg, donde los agentes eligen la aversión al riesgo en cada caso 
por separado, incluso cuando es inconsistente con la teoría de la 
decisión estándar. 
 
Ejercicio 
 
Estoy cuidando dos pacientes gemelos. A veces les doy aspirina 
para el dolor. Sea cual sea el paciente, la utilidad de calmarle el 
dolor es 10, la utilidad de que le caiga mal la aspirina es -10, y la 
utilidad de que siga con dolor (sin tomar la aspirina) es 0. El tema 
es que a un paciente le cae mal 60% de las veces, y al otro solo 
1%. Ahora viene un paciente con dolor y no sé si darle la aspirina 
o no. Y yo no sé precisamente cuál paciente es el que me está 
pidiendo la aspirina, dado que son gemelos. ¿Qué debería hacer 
según la teoría de riesgo epistémico? 
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Parte I: Psicología de la decisión 

Kahneman y Tversky (1979) revolucionaron el mundo de la psi-
cología y la teoría de la decisión, mostrando resultados muy si-
milares a los de Allais. A diferencia de Allais, Kahneman y 
Tversky tenían formación metodológica como psicólogos, y pu-
dieron demostrar los resultados con mayor rigurosidad. Además, 
elaboraron algunas hipótesis que explican por qué y cuándo las 
personas se alejan del principio de maximización de la utilidad. 

Efecto de certeza 
Las personas deben elegir entre estas dos loterías (en dólares): 

$3.000 seguro  vs $4.000 con 80% 
$3.000 con 25% vs $4.000 con 20% 

En el experimento de Kahneman y Tversky, la mayoría (80%) 
prefirieron $3.000 seguro en la primera, y la mayoría (65%) eli-
gieron $4.000 con 20% en la segunda (n = 95). Esto contradice 
el principio de maximización de utilidad esperada.  
Siguiendo la teoría estándar, los agentes deberían elegir el mismo 
lado en ambos casos. Esto se debe a que la utilidad de una lotería 
que me da $3.000 con 25% de probabilidad es naturalmente ¼ 
de la utilidad de obtener $3.000 seguro; y la utilidad de obtener 
$4.000 con 20% de probabilidad es ¼ de la utilidad de $4.000 
con 80%. Es decir, se trata de la misma apuesta, pero las utilida-
des de la segunda apuesta están multiplicadas por 0.25. Esto no 
debería cambiar el orden de preferencias. 
La idea de Kahneman y Tversky es que aquí opera un efecto de 
certeza. No importa la utilidad del dinero, $3.000 con certeza es 
mejor que una posibilidad con el mismo valor esperado. Esto no 
opera en la segunda apuesta porque no hay certeza, es solo una 
posibilidad contra otra posibilidad. 

Probabilidades pequeñas 
Otro fenómeno que detectaron Kahneman y Tversky es este: 

$6.000 con 45% vs $3.000 con 90% 
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$6.000 con 0.01% vs $3.000 con 0.02% 
 
En el experimento que realizaron los autores, la mayoría (86%) 
elige $3.000 con 90% antes que $6.000 con 45%. Mientras que 
la mayoría (73%) prefiere $6.000 con 0.01% antes que $3.000 
con 0.02% (n = 66). Esto viola el principio de maximización de 
utilidad, por las mismas razones que en la apuesta anterior: las 
probabilidades de arriba y las de abajo tienen la misma propor-
ción. Cualquiera sea la utilidad de $6.000 o de $3.000, la prefe-
rencia en estas apuestas debe ser igual. 
Según Kahneman y Tversky, lo que está operando aquí es la in-
capacidad para operar con probabilidades pequeñas. En particu-
lar, aquí los agentes perciben que 90% es el doble que 45% pero 
no que 0.02% es el doble que 0.01%, dado que ambos números 
son pequeños. Esto también había sido notado por Allais (1953b, 
p. 54), que planteó que las probabilidades objetivas se “distor-
sionan” subjetivamente. 
 
Efecto reflejo 
La última encuesta de Kahneman y Tversky que tomaremos es 
la siguiente. En realidad, es un par de decisiones que deben tomar 
los agentes: 
 

1. Te dieron $1000. Ahora debes elegir entre $500 extra segu-
ros, o tirar una moneda entre $1000 o nada. 
2. Te dieron $2000. Ahora debes elegir entre que te saquen 
$500 seguro, o tirar una moneda entre que te saquen $1000 o 
nada. 
 

Si leemos con atención, veremos que ambas apuestas son exac-
tamente iguales (elegimos entre $1500 seguros, y tirar la moneda 
entre $1000 y $2000); solamente cambia la forma de describirlas. 
Aquí ni siquiera opera algún tipo de transformación de utilidades 
o probabilidades. La gente (84%), sin embargo, tiende a elegir 
los $500 extra seguros en el primer caso (n = 70), pero también 
eligen (69%) tirar la moneda en el segundo caso (n = 68).  
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Lo que indica esto para Kahneman & Tversky es una asimetría 
entre las conductas respecto a pérdidas y ganancias. En particu-
lar, la gente prefiere irse con $1500 en el primer caso, que es lo 
seguro, y además “gana” algo respecto al statu quo de $1000. 
Mientras que, en el segundo caso, la gente piensa que lo mejor 
sería arriesgarse a quedarse con los $2000 (es decir, mantener el 
statu quo), porque perder $500 es visto como una pérdida.   
En términos un poco más técnicos, a partir de cierto punto perci-
bimos una diferencia entre “pérdida” y “ganancia”. Respecto a 
las ganancias, nos comportamos de forma más aversa al riesgo; 
pero respecto a las pérdidas, preferimos tomar riesgos. Por eso 
este efecto se llama efecto reflejo (reflection effect). Este efecto 
es una versión más general de un fenómeno conocido como 
“efecto del marco” (framing effect), donde las decisiones se to-
man según la forma en que está presentado el problema. 
 
Teoría de prospectos 
Usando algunas de estas consideraciones, Kahneman & Tversky 
plantearon cierta modificación de la teoría de la decisión, donde 
la utilidad de un acto se define así: 
 

U(A) = π(p1) × v(u1) + … + π(pn) × v(un) 
 

Ahora veremos precisamente qué significan esa v y esa π. 
 
Función π sobre probabilidades 
La función π sobre probabilidades no es exactamente lineal, por-
que sobreestima las probabilidades pequeñas y subestima las 
grandes. La idea es que, si escuchamos que algo es 99% proba-
ble, exageramos la importancia de ese 1% faltante, aunque sea 
realmente bajo. Subjetivamente, un 1% significa más que solo 
un 1% (por estas razones, una hamburguesa siempre cuesta 
$5.99, y no $6). La curva en este gráfico representa nuestra re-
presentación subjetiva de las probabilidades: 
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Función v sobre utilidades 
Respecto a la función v, lo que hace es mostrar el valor subjetivo 
de determinadas ganancias o pérdidas (relativas a un punto de 
referencia). La idea, brevemente, es que en un marco de decisión 
el agente encuentra un punto de referencia a partir del cual ganar 
cuenta como “ganancia”, y perder cuenta como “pérdida”. Sole-
mos pensar que ese punto es $0, pero esto depende del escenario 
descrito. Según estos autores, las pérdidas importan más (propor-
cionalmente) que similares ganancias. Y por otro lado, los agen-
tes tienden a adoptar conductas más riesgosas (risk-seeking) 
cuando tienen la pérdida asegurada; mientras que la conducta de 
aversión al riesgo es más común cuando hay alguna ganancia se-
gura. Esto nos arroja una particular función en forma de S: 
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La función v no solo explica el efecto reflejo, sino también el 
efecto de certeza. Porque la certeza nos da un punto de referen-
cia, a partir del cual las pérdidas son vistas como mucho peores 
(proporcionalmente) a las ganancias. En cambio, cuando el pro-
blema es planteado en términos de loterías con distintas probabi-
lidades, las personas no tienen ese punto de referencia. 
En resumen, para Kahneman y Tversky los agentes violan siste-
máticamente los axiomas de la teoría de la decisión estándar, 
pero podemos buscar una modificación no demasiado sustantiva 
de la teoría original que describe mejor el comportamiento de los 
agentes. 
 
Ejercicio 
 
En la película Don’t Look Up (2021), los astrofísicos encarnados 
por Leonardo di Carpio y Jennifer Lawrence le plantean a la pre-
sidenta (Meryl Streep) que el mundo se va a acabar por la caída 
de un meteorito. La presidenta les critica que en ciencia nada es 
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exacto, y ellos admiten que la probabilidad es 99.78%. El asis-
tente de la presidenta se alegra de que “no es 100%”, y la presi-
denta dice “Ok, entonces digamos que es 70% y sigamos”. 
¿Cómo explicamos esto usando la teoría de prospectos? 
 
 
Parte J: Buchak y el riesgo como factor 
 
En su libro Risk and Rationality (2013), Lara Buchak propone 
una teoría alternativa de la decisión que puede explicar mejor al-
gunas situaciones específicas, como las presentadas por Allais. 
Buchak quiere explicar un tipo de aversión al riesgo distinta a la 
planteada por la teoría estándar, y más independiente de la utili-
dad marginal decreciente del dinero. 
En la teoría de Buchak, un agente tiene un índice r, que indica su 
aversión al riesgo. El índice r va de probabilidades a números 
entre 0 y 1 (podríamos decir que la función r “distorsiona” las 
probabilidades). 
Una función de riesgo r: [0,1] ⟶ [0,1], tiene las siguientes pro-
piedades: 
 

- r(0) = 0  
- r(1) = 1  
- 0 ≤ r(x) ≤ 1 
- r no es decreciente (si x ≤ y, entonces r(x)	≤	r(y)). 

 
Por ejemplo, puedo representar la máxima aversión al riesgo o 
maximin si asumo que r(1) = 1, y para todos los otros x, r(x) = 0. 
Otra asignación posible es r(x) = x2.  
Ahora supongamos que voy al cine a ver una película de un di-
rector que últimamente ha hecho películas relativamente buenas,  
otras excelentes, y también algunas malas: 
 

 Buena  
(p = 0.5) 

Excelente  
(p = 0.3) 

Mala  
(p = 0.2) 

Cine 11 15 5 



88/ Una introducción a la epistemología formal 

En la teoría estándar, calculamos la utilidad del acto de este 
modo: 

U(Cine) = 0.5 × 11 + 0.3 × 15 + 0.2 × 5 = 5.5 + 4.5 + 1 = 11 

La versión de Buchak funciona distinto. Primero, ordeno los re-
sultados de peor a mejor: 5 < 11 < 15. Luego calculo las utilida-
des de forma “acumulativa”. 
La idea de un cálculo acumulativo es que lo peor es “seguro”. 
Tengo cierta probabilidad de obtener lo segundo peor; y cierta 
probabilidad de obtener lo tercero peor (que si hay tres opciones, 
es lo mejor); etc. Entonces, si hay tres opciones, calculamos la 
utilidad de este modo: 

U(A) = U(peor) + P(2º peor o mejores) × [U(2º peor) - U(peor)] + 
P(mejor) × [U(mejor) - U(2º peor)] 

Más generalmente, cuando hay n opciones: 

U(A) = U(peor) + P(2° peor o mejores) × [U(2° peor) - U(peor)] + … 
+ P(mejor) × [U(mejor - U((n-1)° peor))]

Para el ejemplo en cuestión, podemos calcularlo así: 

U(Cine)  = 5 + 0.8 × (11 - 5) + 0.3 × (15 - 11) 
= 5 + 0.8 × 6 + 0.3 × 4 
= 5 + 4.8 + 1.2  
= 11 

Como podemos ver, esta lectura “acumulativa” nos da el mismo 
resultado que la teoría estándar; solo es otra forma de plantear el 
mismo concepto.  
Pero en la teoría de Buchak, podemos aplicarle el índice r a las 
probabilidades, y así recogemos la idea de aversión al riesgo 
como elemento autónomo. La fórmula resultante es esta, que es 
igual a la anterior, pero aplicamos la r a cada aparición de las 
probabilidades (Buchak 2013, p. 53): 
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U(A) =  U(peor) + r(P(2° peor o mejores)) × [U(2° peor) - U(peor)] + 

… + r(P(mejor)) × [U(mejor - U((n-1)° peor))] 
 
Por ejemplo, supongamos que r(x) = x2. En este caso, nuestra 
utilidad para el ejemplo anterior será: 
 

U(Cine)  = 5 + r(0.8) × (11 - 5) + r(0.3) × (15 - 11)  
= 5 + r(0.8) × 6 + r(0.3) × 4  
= 5 + 0.64 × 6 + 0.09 × 4  
= 5 + 3.84 + 0.36  
= 9.2 

 
Es decir, la utilidad del acto es menor, porque cuenta el riesgo. 
Una ventaja fundamental de la teoría de Buchak es que nos per-
mite explicar la paradoja de Allais sin recurrir a la irracionalidad. 
Por ejemplo, recordemos esta apuesta: 
 

 1 2-11 12-100 

A1 1 millón 1 millón 1 millón 

A2 0 5 millones 1 millón 

 
Aquí, la mayoría de la gente prefiere A1 sobre A2, porque A2 es 
seguro. Pero las personas prefieren A4 sobre A3 aquí: 
 

 1 2-11 12-100 

A3 1 millón 1 millón 0 

A4 0 5 millones 0 

 
La teoría estándar de la decisión es incapaz de explicar esta si-
tuación. Pero la teoría de Buchak lo explica fácilmente. Supon-
gamos que uno valora al dinero de forma lineal (es decir, U($x) 
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= x), pero tiene cierta aversión al riesgo, representable con r(x) = 
x3. Entonces: 
 
U(A1) = 1M. 
U(A2) = 0 + (0.99)3 × 1M + (0.1)3 × 4M = 970.000 + 4.000 = 974.000 
U(A3) = 0 + (0.11)3 × 1M = 1331 
U(A4) = 0 + (0.1)3 × 5M = 5000 
 
Aquí podemos ver claramente que A1 > A2 y A4 > A3, solo ha-
ciendo uso de la función de riesgo r. 
 
Ejercicio  
 
Debes elegir cuánto tiempo ir de vacaciones a la playa. Tienes 
dos opciones, ir una semana o ir dos semanas. 
 
 

Lindo Clima 
(p = 0.5) 

Mal clima 
(p = 0.4) 

Clima normal 
(p = 0.1) 

Una semana 7 4 6 

Dos semanas 10 1 9 

 
1. ¿Qué deberías hacer según la teoría de la decisión tradicional? 
Probar que da igual calcular las utilidades de forma usual o de 
forma “acumulativa”. 
2. ¿Qué deberías hacer según la teoría de la decisión de Bu-
chak, suponiendo que r(x) = x2? 
 
Parte K: Experiencia transformadora 
 
En su libro Transformative Experience, la filósofa L.A. Paul 
(2014) propone un desafío para la teoría de la decisión. Según la 
autora, algunas situaciones no permiten la aplicación de la teoría 
de la decisión estándar. Esto sucede especialmente en situaciones 
de experiencia transformadora. 
Llamamos “experiencia transformadora” a una experiencia que 
cambiará de forma drástica nuestra escala de utilidades. Por 
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ejemplo, supongamos que no quiero tener hijos, pero pienso que, 
si eventualmente me convirtiera en padre, realmente valoraría la 
paternidad más que cualquier otra cosa. Un caso más polémico 
es meterse en una secta religiosa. Yo en principio soy ateo, y 
lleno de conflictos; pero sé que, si me meto en una secta, lo que 
más va a importarme es el amor a Dios, y voy a estar contento 
con eso. ¿Debería meterme en la secta? 
Según Paul, hay dos problemas para este tipo de decisiones. El 
primer problema, que podríamos llamarlo “epistémico”, es que 
no sé cuáles son las utilidades de la experiencia antes de realizar 
la experiencia. Esto aplica a casos de experiencia transformadora 
más clásicos: por ejemplo, no sé cuán bella es la paternidad antes 
de ser padre. Y también aplica a otros casos más sencillos: por 
ejemplo, no sé cuánto me gustará el mole mexicano antes de pro-
barlo, etc. Según Paul, la teoría de la decisión presupone el co-
nocimiento de las utilidades futuras, pero esto es inaccesible en 
estos casos. 
Una respuesta obvia es que puedo preguntarles a mis amigos o 
conocidos cómo se siente, y hacerme una idea. Pero según Paul, 
tomar una decisión en base a las utilidades de mis amigos le quita 
autenticidad a la decisión. 
El segundo problema, que podríamos llamar “existencial”, es que 
la experiencia cambia mi punto de vista. Por ejemplo, sé que el 
mismo hecho de convertirme en padre cambiará mi punto de 
vista. Posiblemente, al convertirme en padre, la paternidad me va 
a interesar mucho más de lo que me interesa ahora. Pero si ahora 
la paternidad no me interesa, ¿por qué debo privilegiar a ese “yo 
futuro” respecto a mi yo actual? La teoría de la decisión presu-
pone que el sujeto y sus utilidades no cambian con el tiempo, 
pero el sujeto y sus utilidades de hecho cambian y mucho. 
Por esta razón, Paul dice que no hay decisiones racionales o irra-
cionales respecto a experiencias transformadoras. En estos ca-
sos, la decisión debo plantearla en términos de si quiero tomar 
ese riesgo o no. 
El problema de este tipo de decisiones había sido planteado an-
teriormente. Un caso conocido es el existencialismo francés: en 
su célebre libro El existencialismo es un humanismo (1946), Sar-
tre nos plantea la decisión de un joven que no sabe si ir a la guerra 
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o quedarse cuidando a la madre. Aún dentro de la escuela analí-
tica, Ullman y Morgenbesser (1977) sostienen que en estos casos 
de decisiones existenciales uno no puede realmente elegir, sino 
simplemente escoger (“pick”), sabiendo que no hay razones de-
cisivas a favor de ninguna opción. No podemos optimizar la ac-
ción porque no hay un acto que maximice utilidad desde nuestra 
perspectiva actual, pero podemos tomar decisiones razonables, 
al escoger alguna opción que no esté claramente dominada por 
otras.  
En la filosofía reciente, distintos autores han intentado explicar 
las decisiones transformadoras usando variaciones del esquema 
clásico de la teoría de la decisión. Entre ellos podríamos mencio-
nar a Pettigrew (2019), quien propone que uno debería decidir a 
partir de la consideración y la ponderación de distintos “yoes” 
(pasados, presentes y futuros). Callard (2018) también propone 
que las decisiones transformadoras pueden ser racionales, porque 
las personas podemos aspirar a ser distintos; y muchas veces, ese 
“nuevo yo” está presente (aunque sea en forma de ideal) en no-
sotros mismos.  
 
Soluciones para el capítulo 2 
 
PARTE A 
El problema es que enviar más soldados a la guerra no es inde-
pendiente de ganarla, sino que lo hace más probable. Una forma 
de reformular la matriz de decisión es que las acciones propias 
sean la cantidad de soldados que uno envía y los “estados del 
mundo” sean los soldados que envía el ejército enemigo. 
 
PARTE B  
a. No hay acciones estrictamente dominadas. Ir a Recoleta está 
débilmente dominada por Netflix en casa, porque c ∼ e y d > f. 
b. Maximax nos indicaría ir al Parque Rivadavia: puede ocurrir 
el evento preferido a. 
c. Maximin nos indicaría ver Netflix en casa: lo peor que puede 
suceder es c, que es mejor que f y b. 
 
PARTE C 
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a. Agentes 3 y 4. 
b. Agentes 1 y 2. La función es y = 5x. 
c. Agentes 1 y 3. La función es y = 2x + 100. 
 
PARTE D 
1. 
U(Avión) = 0.4 × 40 + 0.5 × 20 + 0.1 × -20 = 16 + 10 - 2 = 24 
U(Bus) = 0.4 × 20 + 0.5 × 40 + 0.1 × 20 = 8 + 20 + 2 = 30 
U(No ir) = 0 + 0.5 × 10 + 0.1 × 150 = 5 + 15 = 20 
Debo ir en bus. 
 
2. 
a. A1. 
b. ¿Qué debo elegir si U($x) = ln(x + 1)? 
U(A1) = 1/3 (4.8) = 1.6 
U(A2) = ½ (3.91) = 1.95 
Debo elegir A2. 
c. ¿Qué debo elegir si U($x) = √𝑥	? 
U(A1) = 1/3 (11) = 3.66 
U(A2) = ½ (7) = 3.5 
Debo elegir A1. 

 
3.  
¿Debo elegir la caja grande o la pequeña? 
U(Grande) = 0.6 × [8 - (9 - 7)2] + 0.4 × [10 - (9 - 7)2] 

= 0.6 × 4 + 0.4 × 6 = 2.4 + 2.4 = 4.8 
U(Pequeña) = 0.6 × [8 - (6 - 7)2] + 0.4 × [10 - (6 - 7)2]  

= 0.6 × 7 + 0.4 × 9 = 4.2 + 3.6 = 7.8 
Me conviene la caja pequeña. 
 
PARTE E 
1. 
U(frutilla) = 0.6 × 70 + 0.4 × 10 = 42 + 4 = 46 
 
2. 
Si A ≻ B ≻ C, entonces se da que A ≻ B, pero ApC ∼	BpC. Esto 
viola Independencia. 
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3. 
Supongamos que [iPhone nuevo > iPhone viejo] > [Android 
viejo]. El axioma de Continuidad nos dice que existe alguna p tal 
que [iPhone nuevo]p[Android viejo] ≻	[iPhone viejo]. Y esto es 
lo que rechaza un orden lexicográfico. 

PARTE G 
Alcanza con analizar los escenarios 1-11(el escenario 12-100 es 
idéntico para ambas acciones). Aquí, la utilidad de A1 es 0.11 × 
ln(1.000.001) = 1.51. Mientras que la utilidad de A2 es 0.1 × 
ln(5.000.001) = 1.54. Entonces conviene A2, y también A4, aun-
que la diferencia es mínima. 

PARTE H 
En el peor escenario, la utilidad sería 0.6 × -10 + 0.4 × 10 = 
-6 + 4 = -2. Entonces mejor no le doy la aspirina (utilidad 0).

PARTE I 
Sesgo de las probabilidades: las personas interpretan 0.99 como 
algo mucho menor a 0.99. 

PARTE J 
a. ¿Qué deberías hacer según la teoría de la decisión tradicional?
Probar que da igual calcular las utilidades de forma usual o de
forma “acumulativa”.
Según la tradicional:
U(Una) = 0.5 × 7 + 0.4 × 4 + 0.1 × 6 = 3.5 + 1.6 + 0.6 = 5.7
U(Dos) = 0.5 × 10 + 0.4 × 1 + 0.1 × 9 = 5 + 0.4 + 0.9 = 6.4
Debo ir dos semanas.

Usando la versión cumulativa da el mismo resultado: 
U(Una) = 4 + 0.6 × 2 + 0.5 × 1 = 4 + 1.2 + 0.5 = 5.7 
U(Dos) = 1 + 0.6 × 8 + 0.5 × 1 = 1 + 4.8 + 0.5 = 6.4 

b. ¿Qué deberías hacer según la teoría de Buchak, suponiendo
que r(x) = x2?
U(Una) = 4 + 0.36 × 2 + 0.25 = 4 + 0.72 + 0.25 = 4.97
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U(Dos) = 1 + 0.36 × 8 + 0.25 = 1 + 2.88 + 0.25 = 4.13 
Ahora me conviene ir solo una semana. 
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CAPÍTULO 3: TEORÍA DE JUEGOS 

El propósito de este capítulo es introducir algunos conceptos fun-
damentales de la teoría de juegos. Solemos pensar a los juegos 
como situaciones lúdicas y simplemente recreativas. El ejemplo 
más obvio de un juego es un partido de ajedrez o de fútbol.  En 
la teoría de juegos, sin embargo, nos interesan muchas situacio-
nes, y los “juegos” entendidos a la forma usual son solamente un 
subconjunto de esas situaciones.  
La teoría de juegos es principalmente una teoría sobre las inter-
acciones racionales entre agentes: aquí, un juego es un escenario 
donde las consecuencias de las acciones de un agente dependen 
de lo que hagan otros agentes. De hecho, casi todas las interac-
ciones humanas (desde invitar a persona a salir, hasta manejar en 
una autopista) se podrían modelar como un juego.  

Parte A: Juegos estratégicos 

De modo similar a lo que sucedía con la teoría de la decisión, 
empezaremos trabajando con escenarios donde las probabilida-
des no están presentes. En los juegos más sencillos, los agentes 
tienen distintas acciones a disposición. Por ejemplo, suponga-
mos que los agentes juegan “piedra, papel o tijera”. Asumimos 
que el lector conoce este juego. En un juego, el resultado de cada 
acción ya no va a depender del estado del mundo, sino de lo que 
hagan otros agentes. Podemos partir por un escenario de sola-
mente dos agentes. Supongamos que estamos en un partido de 
piedra, papel o tijera, donde ambos apuestan $1, y el que gana se 
lleva el “pozo” (es decir, se lleva una ganancia neta de $1). Si 
ambos juegan lo mismo (por ejemplo, ambos juegan Tijera), se 
devuelve el dinero a ambos. Podemos representar el escenario de 
este modo: 
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Piedra Papel Tijera 

Piedra $0, $0 -$1, $1 $1, -$1 

Papel $1, -$1 $0, $0 -$1, $1 

Tijera -$1, $1 $1, -$1 $0, $0 

En la tabla, las filas representan las acciones posibles del Agente 
1. Mientras que las columnas representan las acciones posibles
del Agente 2. En general, todos los textos de teoría de juegos
usan esta misma convención: Fila es Agente 1 y Columna es
Agente 2. Si un juego involucra más agentes, ya no puede repre-
sentarse con una tabla (se suelen usar varias tablas); pero en este
capítulo nos restringimos a juegos de dos agentes.
El resultado del juego será ahora un par de resultados, es decir,
un resultado para cada jugador. Lo escribimos de este modo:
“(Resultado para el Agente 1, Resultado para el Agente 2)”. Por
ejemplo, ($1, -$1) significa que el Agente 1 recibe $1 y el Agente
2 pierde $1. Los paréntesis podrían obviarse para facilitar la lec-
tura, como en la tabla anterior. Este juego pertenece a un tipo
específico: es un juego de suma-cero, donde lo que un jugador
pierde, lo gana otro jugador. Pero no todos los juegos son así.
Como señalamos anteriormente, la teoría de juegos no solamente
representa juegos literalmente, sino también cualquier situación
de interacción. Por ejemplo, esta tabla nos permite representar a
dos autos en una autopista:

Carril izquierdo Carril derecho 

Carril izquierdo 0, 0 1, 1 

Carril derecho 2, 2 0, 0 

La idea de esta tabla es la siguiente. El Auto 1 y el Auto 2 quieren 
ir rápido, y definitivamente no quieren ir por el mismo carril. 
Pero el Auto 1 no quiere ir tan rápido, y prefiere ir por el carril 
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derecho (el carril “lento”). Mientras que el Auto 2 prefiere la ve-
locidad, y le gustaría más ir por el lado izquierdo (el carril “rá-
pido”). ¿Qué terminarán haciendo estos autos? Uno querría pen-
sar que elegirán la mejor opción para ambos: que el Auto 1 vaya 
por el carril derecho, y el Auto 2 vaya por el carril izquierdo. Este 
es un juego cooperativo, porque los agentes podrían salir benefi-
ciados de llegar a un acuerdo, y no tienen razones para romper 
ese acuerdo (a diferencia de otros juegos que veremos luego). 
Para entender estos conceptos, más adelante usaremos la noción 
de equilibrio.  
Filosóficamente, un elemento importante de la teoría de juegos 
es que los agentes conocen las utilidades de los otros. Esto per-
mite que los agentes puedan actuar de forma estratégica, consi-
derando lo que harán los demás. El conocimiento de las utilida-
des de los otros puede ser un elemento realista (por ejemplo, en 
una apuesta yo sé cuánto dinero obtendrían los demás), o simple-
mente una idealización. 
La matriz que recién dibujamos es un esquema de juego. Un es-
quema de juego dibujado en forma estratégica se compone de lo 
siguiente: 
 

- Un conjunto de n jugadores. 
- Un conjunto Si de estrategias para cada jugador i (por ahora, 
una estrategia es una posible acción). 
- Un conjunto S de perfiles de estrategia, que describen accio-
nes de cada agente (por ejemplo: <Auto 1 va por carril iz-
quierdo, Auto 2 va por carril izquierdo>).  
- Una función que, a cada perfil de estrategia, asigna una n-
tupla de utilidades (p. ej., la utilidad de ir ambos por la iz-
quierda es (0,0)). 
- Un ranking ≥i de preferencia entre resultados para cada juga-
dor i. Suponemos que este ranking es completo y transitivo. 
En nuestros ejemplos usamos números para expresar la utili-
dad, por lo cual será innecesario aclarar el orden (un número 
más alto representa algo preferible). 

 
Para los juegos que veremos por ahora (y en casi todo este capí-
tulo), las escalas serán ordinales. Podemos poner las utilidades 
que queramos en tanto preserven el orden.  
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Utilidad, dinero y egoísmo 
Antes de seguir, también hace falta aclarar que en un contexto 
colectivo la utilidad no necesariamente sigue al dinero. Es decir, 
un escenario donde yo obtengo $1000 no necesariamente es me-
jor para mí que un escenario donde yo obtengo $900. De hecho, 
dado que los resultados involucran a varios agentes, la utilidad 
de los resultados dependerá de la disposición de cada uno: hay 
agentes más altruistas, otros más egoístas, otros igualitarios, etc. 
La idea de que el dinero tiene una utilidad marginal decreciente 
es correcta en la escala individual, pero a escala colectiva podría 
haber otros factores en juego. 
Por ejemplo, supongamos que tenemos esta situación. Dos ami-
gos pueden aplicar a un pequeño trabajo de $20, y lo harán sin 
saber qué hace el otro. Si ambos aplican, se reparten el trabajo y 
ganan $10 cada uno. Si uno aplica y el otro no, el que aplicó se 
quedará con $15, y le dará $5 al otro. Y si ninguno de los dos 
aplica, no ganarán nada. 
 

 
Aplicar No aplicar 

Aplicar $10, $10 $15, $5 

No aplicar $5, $15 $0, $0 

 
Si ambos sujetos son egoístas y ambiciosos (es decir, solo se 
preocupan por el dinero que ellos mismos obtienen), la utilidad 
podría verse así: 
 

 
Aplicar No aplicar 

Aplicar 2, 2 3, 1 

No aplicar 1, 3 0, 0 

 
Sin embargo, podría ser que el Agente 1 fuera muy igualitarista, 
y lo que más le interesa es la igualdad (sólo se preocupa por la 
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cantidad si ambos reciben lo mismo, pero rechaza cualquier es-
cenario no igualitario). Entonces la matriz podría verse así: 

Aplicar No aplicar 

Aplicar 2, 2 0, 1 

No aplicar 0, 3 1, 0 

De todas formas, en los ejemplos siguientes vamos a trabajar di-
rectamente con utilidades. Y a falta de aclaración, vamos a asu-
mir que los agentes son de hecho egoístas y ambiciosos; usual-
mente se llama homo-economicus a este modelo de ser humano. 
Pero el egoísmo respecto al dinero o los bienes, valga remarcar, 
no es un elemento esencial de la teoría de juegos.22  

Dominancia débil y estricta 
Lo primero que podríamos asumir en un juego es que los agentes 
racionales no tomarán decisiones dominadas; esta idea proviene 
de la teoría de la decisión.  
Los conceptos de dominancia se definen de forma muy similar a 
como lo hacemos en teoría de la decisión: 

(Dominancia estricta)  Una estrategia A domina estric-
tamente otra estrategia B para el jugador n si y sólo si 
para toda posible estrategia de los otros jugadores, la es-
trategia A del jugador n en conjunción con las estrategias 
de los demás da un mejor resultado para n que el que 
daría la estrategia B. 

Decimos también que una estrategia es estrictamente dominante 
si domina estrictamente a todas las otras. 
Para ver si una estrategia es dominante no hace falta ver el juego 
entero, sino los resultados para el jugador en cuestión. Por ejem-
plo: 

22 Una crítica clásica al homo economicus se encuentra en Sen (1977). 
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E F G 

A 4, … 3, … 2, … 

B 2, … 2, … 1, … 

C 5, … 0, … 2, … 

D 5, … 1, … 2, … 

 
Vista esa matriz, podemos preguntarnos si hay alguna estrategia 
estrictamente dominada por otra. Y la respuesta es que sí: para el 
jugador 1, la estrategia B está estrictamente dominada por la es-
trategia A. Cualquier cosa que haga el jugador 2, al jugador 1 le 
conviene hacer A en vez de B.  
Por otro lado, existe una noción más débil de dominancia: 
 

(Dominancia débil) Una estrategia A domina débil-
mente otra estrategia B para el jugador n si y sólo si: 
- En todos los casos, la estrategia A del jugador n da igual 
o mejor resultado para n que lo que daría la estrategia B; 
- En algunos casos, la estrategia A del jugador n da mejor 
resultado para n que lo que daría la estrategia B.  

 
Por ejemplo, en la matriz anterior, la estrategia D domina débil-
mente a la C para el jugador 1. Observemos que, si una estrategia 
domina estrictamente a otra, también la domina débilmente. 
Ahora podemos introducir el concepto de equilibrio. Intuitiva-
mente, un “equilibrio” es una situación donde cada jugador hizo 
lo mejor que pudo. Decimos que un perfil de estrategias (o sea, 
una celda) es un equilibrio de estrategias estrictamente domi-
nantes cuando para cada jugador i, si es una estrategia estricta-
mente dominante. (Análogamente podemos hablar de equilibrios 
de estrategias débilmente dominantes).  
En el juego de Aplicar al Trabajo, cuando ambos agentes son 
egoístas y ambiciosos, el equilibrio de estrategias estrictamente 



 
Diego Tajer /103 

 

dominantes es que ambos apliquen. Esto se debe a que Aplicar 
es estrictamente dominante para ambos agentes individualmente 
(marco las estrategias dominantes con negrita): 
 

 
Aplicar No aplicar 

Aplicar 2, 2 3, 1 

No aplicar 1, 3 0, 0 

 
Es natural pensar que, si existe un equilibrio de estrategias es-
trictamente dominantes, los agentes racionales tomarán esa op-
ción. Por ejemplo, podríamos predecir que todos los agentes ra-
cionales jugarán <Aplicar, Aplicar>. Aunque este supuesto suele 
mantenerse en muchos casos, también tuvo cuestionamientos, 
como veremos luego. 
 
Procedimientos de borrado iterado 
Como vimos en teoría de la decisión, el principio fundamental 
de la racionalidad es la dominancia: para que un agente sea con-
siderado racional, es necesario que no tome decisiones domina-
das por otras. De ahí viene la importancia del equilibrio de estra-
tegias estrictamente dominantes. 
El procedimiento de borrado iterado (de estrategias estricta-
mente dominadas) podría verse como una extensión del concepto 
de equilibrio de estrategias estrictamente dominantes. La idea 
aquí es que, en un juego, no solo podemos asumir que los agentes 
racionales evitan acciones dominadas: también podemos asumir 
que los otros jugadores saben que existe esta presunción de ra-
cionalidad.  
Este proceso de borrado iterado nos dice que, si encontramos una 
estrategia estrictamente dominada, podemos borrarla (porque to-
dos los agentes saben que el agente no tomará esa estrategia). 
Ahora obtenemos un nuevo juego. Si encontramos una nueva es-
trategia estrictamente dominada, podemos borrarla. Así sucesi-
vamente, hasta que no haya estrategias estrictamente dominadas. 
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Si llegamos a una celda única, diremos que encontramos una so-
lución al juego. 
Para el ejemplo de Aplicar al Trabajo, donde ambos agentes son 
egoístas y ambiciosos, partimos del juego entero: 
 

 
Aplicar No aplicar 

Aplicar 2, 2 3, 1 

No aplicar 1, 3 0, 0 

 
Aplicar al trabajo es dominante para el Agente 1, entonces bo-
rramos la otra estrategia. 
 

 
Aplicar No aplicar 

Aplicar 2, 2 3, 1 

 
Ahora podemos ver que No Aplicar está dominado para el 
Agente 2, entonces borramos su estrategia de No Aplicar. 
 

 
Aplicar 

Aplicar 2, 2 

 
Y bien, ahora tenemos una solución al juego. 
Esto no solo sucede con juegos simétricos. Supongamos que es-
tamos en la versión del juego donde el Agente 1 es estrictamente 
igualitarista, y las utilidades se ven así: 
 

 
Aplicar No aplicar 

Aplicar 2, 2 0, 1 

No aplicar 0, 3 1, 0 
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Aquí, el Agente 1 no tiene una estrategia dominante. Pero el 
Agente 2 sí tiene: puede Aplicar. Entonces podemos eliminar No 
Aplicar para el Agente 2: 

Aplicar 

Aplicar 2, 2 

No aplicar 0, 3 

Pero el Agente 1 “sabe” que el Agente 2 hará esto. Por ende, 
también decide aplicar: 

Aplicar 

Aplicar 2, 2 

Esta es la solución al juego. Conceptualmente, la idea sería la 
siguiente: en el juego Aplicar al Trabajo, el Agente 2 puede pen-
sar “Haga lo que haga el Agente 1, me conviene Aplicar”. En-
tonces va a aplicar. Mientras que el Agente 1 podría pensar “el 
Agente 2 va a aplicar, porque le conviene en ambos casos; en-
tonces me conviene también aplicar”. Es decir, cada agente actúa 
suponiendo qué es lo que racionalmente hará el otro. 
Entonces, el comportamiento racional en este juego será igual 
para el egoísta o el igualitarista, si sabe que el otro es egoísta. 
Podemos practicar el método con una matriz más compleja: 

D E F 

A 7, 3 5, 4 2, 1 

B 1, 2 6, 3 3, 4 

C 3, 0 3, 6 6, 7 
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El Agente 1 no tiene estrategias dominadas. Pero sí el Agente 2: 
en el primer paso, borramos la D, que está dominada por la E. 
 

 
E F 

A 5, 4 2, 1 

B 6, 3 3, 4 

C 3, 6 6, 7 

 
Ahora podemos eliminar la A, que está dominada por la B: 
 

 
E F 

B 6, 3 3, 4 

C 3, 6 6, 7 

 
Ahora podemos borrar la E, que está dominada por la F:  
 

 
F 

B 3, 4 

C 6, 7 

 
Por último, eliminamos la B, que está dominada por la C. Así 
llegamos a una solución: CF, con utilidad (6,7). 
Podríamos interpretar la situación del siguiente modo. En el pri-
mer paso, la D está dominada por la E. Es decir, E es mejor que 
D en cualquier situación, para el Agente 2. Entonces racional-
mente el Agente 2 no va a elegir esa opción. Pero todos conocen 
el juego. Y esto es sabido por el Agente 1. Entonces el Agente 1 
va a restringir su atención al juego sin D. Así restringido, el 
Agente 1 no va a hacer A, porque está dominada por B. Pero esto 
lo sabe el Agente 2, que va a restringir su atención al juego sin 
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A. Entonces, el Agente 2 hará F. Conociendo este razonamiento, 
el Agente 1 hará C. 
El procedimiento de borrado iterado de estrategias estrictamente 
dominadas presupone el concepto de conocimiento común de ra-
cionalidad. La idea es que todos creen que todos son racionales, 
pero a la vez que todos creen que todos creen que todos creen 
que todos son racionales, y así ad infinitum. Esta es una idealiza-
ción clásica en la teoría de juegos. 
El procedimiento de borrado iterado no siempre arroja una solu-
ción (i.e., una celda única). Muchas veces, “sobreviven” muchas 
celdas. Por ejemplo, si quisiéramos aplicar este método al juego 
de los carriles, no podríamos eliminar ninguna fila o columna. 
 
Equilibrio de Nash 
Como vimos, no todos los juegos tienen un equilibrio de estrate-
gias estrictamente dominantes, o una solución de borrado ite-
rado. Un ejemplo es el juego de los carrilles mencionado antes. 
Para esos casos, noción de Equilibrio de Nash es especialmente 
útil. El concepto fue creado por el matemático John Nash (1950), 
y le valió el Premio Nobel de Economía en 1994. 
Intuitivamente, un estado es un equilibrio de Nash cuando cada 
jugador hace lo mejor posible, dejando fijo lo que hicieron los 
otros jugadores.  
Más formalmente, cuando hay dos agentes i y j, un estado (Si, Sj) 
es un Equilibrio de Nash si y sólo si: 
 

a) La utilidad para i de (Si, Sj) es mayor o igual a la utilidad 
para i de (S*i, Sj) para cualquier otra estrategia S* de i.  
b) La utilidad para j de (Si, Sj) es mayor o igual a la utilidad 
para j de (Si, S*j) para cualquier otra estrategia S* de j. 

 
Naturalmente, un juego puede tener varios equilibrios de Nash. 
Por ejemplo, imaginemos el siguiente juego: 
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D E F 

A 3, 6 0, 0 1, 1 

B 1, 0 2, 5 4, 4 

C 1, 2 3, 7 3, 5 

 
Una forma de encontrar equilibrios de Nash es la siguiente. Pri-
mero, busco los ganadores de cada columna para el Agente 1 (es 
decir, la mejor acción del Agente 1, para cada acción del Agente 
2), y elimino a los perdedores (los marco con una “x”).  
Por ejemplo, en la columna D gana la acción A, que le da 3 pun-
tos al Agente 1. Las otras no pueden ser equilibrio de Nash. 
 

 
D E F 

A 3, 6 0, 0 (x) 1, 1 (x) 

B 1, 0 (x) 2, 5 (x) 4, 4 

C 1, 2 (x) 3, 7 3, 5 (x) 

 
Luego de marcar los ganadores para cada columna, buscamos los 
ganadores de cada fila para el Agente 2. Por ejemplo, si el Agente 
1 hace A, al Agente 2 le conviene hacer D. Marcamos con una 
“x” las demás. De este modo obtenemos los dos equilibrios de 
Nash, que son AD y CE:  
 

 
D E F 

A 3, 6 0, 0 (x) 1, 1 (x) 

B 1, 0 (x) 2, 5 (x) 4, 4 (x) 

C 1, 2 (x) 3, 7 3, 5 (x) 
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Para probarlo, miremos AD. Dado que el Agente 1 eligió A, si el 
Agente 2 cambiaba de columna obtenía menos (0 o 1). Y dado 
que el Agente 2 eligió D, si el Agente 1 cambiaba de fila obtenía 
menos (1). Por eso AD es un equilibrio de Nash. El mismo razo-
namiento podríamos aplicarlo a CE. 
Hay distintas formas de interpretar el concepto de “equilibrio de 
Nash”. Por ejemplo, podemos apelar al arrepentimiento: un es-
tado es un equilibrio de Nash cuando, al ver lo que hicieron los 
otros, ningún individuo se arrepiente de lo que hizo. También 
podemos apelar al concepto de acuerdo autoimpuesto: un estado 
X es un equilibrio de Nash cuando, si todos los jugadores arre-
glaran antes en hacer X, ninguno tendría incentivos en desviarse 
de lo arreglado. 
En algunas aplicaciones, el equilibrio de Nash suele tener tam-
bién un valor predictivo. Por ejemplo, en el juego de los carriles, 
podemos asumir que, con suficiente tiempo, los agentes (si son 
racionales) van a terminar tomando carriles distintos. La idea es 
que los agentes racionales terminan ajustando sus acciones hacia 
alguna estrategia colectivamente estable. Más adelante volvere-
mos a este tema (especialmente en la parte D). 
Podemos enfocarnos ahora en la relación entre los equilibrios de 
Nash y los otros tipos de equilibrio. Naturalmente un equilibrio 
de estrategias estrictamente dominantes es también un equilibrio 
de Nash.  Pero la relación no se da a la inversa: en el juego de los 
carriles, tanto <Izquierdo, Derecho> como <Derecho, Iz-
quierdo> son equilibrios de Nash. Sin embargo, ninguno de los 
dos es un equilibrio de estrategias dominantes.  
El procedimiento de borrado iterado de estrategias estrictamente 
dominadas, cuando arroja una solución (única), también nos da 
un equilibrio de Nash. Y cuando el procedimiento no arroja un 
resultado único, los equilibrios de Nash estarán entre las celdas 
que “sobrevivieron”.23 
Del mismo modo, podríamos decir provisoriamente que no todo 
juego tiene un equilibrio de Nash, al menos si entendemos el 

 
23 Puede encontrarse una prueba sencilla en Bonanno (2015), p. 52.  
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equilibrio de Nash de la forma sencilla que describimos anterior-
mente. Un ejemplo es “Piedra, papel o tijera”. Aquí, cualquiera 
sea el resultado, alguno de los dos jugadores va a desear haber 
jugado distinto. 
Nash estableció que en realidad sí existe un equilibrio para todo 
juego, pero usando “estrategias mixtas”. Este es un concepto bas-
tante más complejo, que veremos más adelante. 

Ejercicios 

1. Realice el procedimiento de borrado iterado de estrategias es-
trictamente dominadas en esta matriz de decisión:

E F G H 

A 3, 2 5, 4 1, 1 3, 9 

B 5, 1 6, 3 3, 2 5, 1 

C 5, 0 3, 2 6, 1 4, 0 

D 2, 9 2, 8 2, 3 6, 1 

2. Encuentre los equilibrios de Nash en este juego:

E F G H 

A 3, 10 5, 4 1, 1 2, 9 

B 3, 7 2, 9 2, 2 5, 3 

C 2, 0 3, 7 1, 1 4, 5 

D 1, 9 3, 8 2, 3 6, 10 

3. Antes señalamos que todo equilibrio de Nash “sobrevive” al
borrado de estrategias estrictamente dominadas. ¿Se mantiene el
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resultado si borramos estrategias débilmente dominadas? Piense 
la respuesta a partir de este ejemplo: 
 

 
C D 

A 1, 1  0, 0 

B 0, 0 0, 0 

 
Parte B: Juegos dinámicos 
 
Algunos juegos no son simultáneos (como el “piedra, papel o ti-
jera”) sino secuenciales. A estos juegos los podemos llamar di-
námicos o extendidos. Por ahora nos concentraremos en juegos 
de información perfecta, donde cada movimiento de cada juga-
dor es visible para los demás jugadores. Dos casos de juegos di-
námicos con información perfecta son el ajedrez y las damas.  
Podemos representar los juegos dinámicos usando árboles. Intro-
ducimos ahora el concepto de árbol para luego mostrar ejemplos.  
Un árbol con raíz dirigido tiene esta forma: 
 

- La raíz del árbol (el nodo que está arriba de todo) no tiene 
ninguna flecha que la señala, mientras que todos los otros no-
dos del árbol son señalados por una flecha. 
- A partir de cada nodo, hay un solo camino que lleva a la raíz. 
- Los nodos que no flechan a otros se llaman terminales, mien-
tras que los demás se llaman nodos de decisión. 
 

Un juego puede verse como un árbol finito con raíz dirigido, 
donde: 

- Cada nodo está asociado a un agente (un agente puede tener 
asociados varios nodos, uno por cada decisión que toma). 
- Cada flecha está asignada a una acción. 
- Cada nodo terminal está asociado con un resultado. 

 
Un árbol de decisión podría verse así (obviamos la “punta” de la 
flecha, porque siempre apuntan hacia abajo): 
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Ejemplo: el enamorado realista 
Juan y Micaela están saliendo hace un par de meses. Juan está 
locamente enamorado, y no puede imaginar algo más hermoso 
que casarse con Micaela. Micaela, por su parte, quiere ir de a 
poco. Esto ya está charlado entre ellos. 
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Aquí, cada nodo terminal representa el resultado para ambos, 
donde (x, y) representa el resultado para Juan (x) y el resultado 
para Micaela (y). ¿Qué debería hacer Juan? Obviamente prefiere 
casarse. Pero sabe que, si le propone matrimonio a su novia, ella 
lo va a rechazar. Entonces, tomando eso en cuenta, lo mejor es 
que siga todo igual. 
Este tipo de razonamiento práctico, donde los agentes actúan en 
vistas de lo que piensan que harán los otros agentes, se llama 
inducción hacia atrás, y lo explicaremos en más detalle a conti-
nuación. 
 
Inducción hacia atrás 
El proceso de inducción hacia atrás (backward induction) nos 
permite determinar una decisión racional en un escenario de jue-
gos dinámicos (esto puede servir para tomar decisiones, o prede-
cir decisiones de otros). Una de las primeras versiones de este 
método (para juegos de suma-cero) apareció en el citado libro de 
Von Neumann y Morgenstern (1944), que suele considerarse 
como el punto de partida de la teoría de juegos moderna. 
El proceso funciona en etapas. Para cada nodo de decisión, mar-
camos la opción que le conviene al agente que toma la decisión, 
y anotamos el resultado de la opción en el nodo decisorio. Em-
pezamos desde los nodos terminales y vamos subiendo hasta la 
raíz, es decir, hasta la primera decisión.  
La idea filosóficamente es que cada uno va a decidir qué hacer 
suponiendo que los otros (y uno mismo) van a decidir lo que sea 
mejor para ellos (es decir, un supuesto básico de racionalidad), y 
que los otros van a asumir también nuestra racionalidad y la de 
todos los demás (y saben que nosotros asumimos su racionalidad, 
etc.). Por ejemplo, en el caso del “enamorado realista” hacemos 
lo siguiente: 
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En la primera etapa, comienzo marcando el “Rechazo” porque es 
lo mejor para Micaela: le da 2 utilidades en vez de 1. Entonces 
Juan va a decidir entre (0, 2) y (3, 3), y obviamente va a decidir 
que todo siga igual, que le da 3 utilidades en vez de 0. De forma 
coloquial: Juan no va a proponerle matrimonio a Micaela, porque 
sabe que, si lo hiciera, ella lo rechazaría. 
Vale mencionar que, aunque no lo mostramos aquí, un mismo 
juego podría tener distintas soluciones de inducción hacia atrás, 
en caso de que haya un empate en algún nodo. Si algún jugador 
es indiferente entre una opción u otra, los otros jugadores deben 
tener en cuenta todas esas opciones. 

Relación entre juegos dinámicos y estratégicos 
En juegos dinámicos también podemos hablar de estrategias. 
Una estrategia es intuitivamente una planificación como esta: “Si 
el otro hace A, yo haré C, y si el otro hace B, yo haré D”. Es 
decir, las estrategias son posibles respuestas a todas las movidas 
de los demás jugadores. 
En el árbol, una estrategia de un jugador es simplemente una lista 
de decisiones, una para cada nodo de decisión de ese jugador. 
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Por ejemplo, en el esquema anterior, Micaela podría tener la es-
trategia (Si me propone, acepto), mientras que Juan podría tener 
la estrategia (Sigue todo igual). 
Podemos escribir ese juego dinámico como un juego estratégico: 
 

 Acepto Rechazo 

¿Matrimonio? 5, 1 0, 2 

Todo igual 3, 3 3, 3 

 
Al pasar de un árbol a una tabla, las estrategias podrían ser un 
poco redundantes, por razones meramente técnicas. Esto se debe 
a que, si Juan no le ofrece matrimonio, no tiene mucha importan-
cia si Micaela acepta o no. 
Podríamos analizar ahora los distintos equilibrios. En principio, 
no hay equilibrios de estrategias estrictamente dominantes. Pero 
sí hay un equilibrio de Nash: (Todo igual, Rechazo). Este es el 
mismo equilibrio encontrado usando inducción hacia atrás.  
Este ejemplo ilustra un resultado general: toda solución de in-
ducción hacia atrás en forma dinámica será equilibrio de Nash en 
forma estratégica. Esto no se da a la inversa (véase Ejercicios). 
El paso de juegos dinámicos a la forma estratégica se vuelve más 
complejo cuando tenemos más opciones de decisión. Por ejem-
plo, supongamos que en caso de que Juan no le proponga matri-
monio, Micaela no tendrá que ahorrar para la boda, y podrá vol-
ver a pensar su plan original de adoptar un perro. Adoptar un 
perro le resulta muy atractivo a ella, pero no tanto a Juan, que 
sentirá que el perro se llevará más atención que él.  
El árbol decisorio será ligeramente distinto al original. 
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La solución por inducción hacia atrás quedaría así: 
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Es decir, incluso sabiendo que al no proponer matrimonio termi-
nará conviviendo con el perro de su novia, Juan decide actuar así, 
porque proponer matrimonio y ser rechazado es aún peor. 
En términos de estrategias (es decir, utilizando matrices), nece-
sitaremos una representación más compleja. Una estrategia es 
una forma de decidir por anticipado para cada posible situación 
de decisión, porque no podemos anticipar lo que harán los de-
más; es decir, una estrategia decide en cada uno de los nodos 
decisorios del agente en cuestión. 
Por eso, ahora Micaela tendrá cuatro estrategias posibles: 
 

- Si Juan se propone, acepto; si no se propone, adopto un perro. 
- Si Juan se propone, rechazo; si no se propone, adopto un perro. 
- Si Juan se propone, acepto; si no se propone, no adopto un perro.  
- Si Juan se propone, rechazo; si no se propone, no adopto un perro. 

 
Esto se traduce en una matriz de decisión más compleja: 
  

 Acepto/ 
Perro 

Rechazo/ 
Perro 

Acepto/ 
Sin perro 

Rechazo/ 
Sin perro 

Propongo 
Matrimonio 

5, 1 0, 2 5, 1 0, 2 

Todo igual 2, 5 2, 5 3, 3 3, 3 

 
Sin embargo, como podemos ver, el equilibrio de inducción ha-
cia atrás (Todo sigue igual, Rechazo/Perro) sigue siendo un 
Equilibrio de Nash. De hecho, es el único equilibrio de Nash.  
 
Ejercicios 
1. Luego de años de peleas, los padres de Ana, Bob y Clara 
(Agentes 1, 2 y 3) deciden dejar que ellos elijan a donde ir de 
vacaciones. Clara, la hermana menor, nunca toma decisiones, así 
que los padres prefieren que sea ella quien decida esta vez. Ana 
puede hacer que decida Clara o darle un poder de veto a Bob, que 
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puede hacer que todos se queden en casa. Resuelva el juego por 
inducción hacia atrás: 

 
 

2. Rusia (Agente 1) está considerando la invasión de un país de 
la OTAN, protegido por Estados Unidos (Agente 2). 
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a. Resolverlo por inducción hacia atrás.
b. Escribir su forma estratégica correspondiente y hallar

sus equilibrios de Nash.
c. ¿Qué podemos concluir sobre la relación entre equili-

brios de inducción hacia atrás y equilibrios de Nash?

Parte C: Cooperación 

El Dilema del Prisionero 
El Dilema del Prisionero es un ejemplo problemático para los 
conceptos de equilibrio vistos anteriormente, porque se da un 
equilibrio de estrategias estrictamente dominantes (y por ende, 
un equilibrio de Nash), pero la solución es poco satisfactoria.  
El escenario planteado es de dos ladrones que son atrapados por 
la policía, y pueden confesar (traicionando al otro) o cooperar 
entre ellos, manteniendo el silencio. Si cooperan ambos, salen 
libres. Si ambos confiesan (es decir, se traicionan mutuamente), 
tienen una pena razonable. Y si uno confiesa y el otro no, el que 
no confiesa tiene una pena muy grave, y el “traidor” sale libre 
con un considerable premio económico. 
Así se ve el juego, con las utilidades correspondientes: 

Cooperar Traicionar 

Cooperar 2, 2 0, 3 

Traicionar 3, 0 1, 1 

Aquí, para el Agente 1 traicionar es estrictamente dominante. Lo 
mismo sucede para el Agente 2. Entonces (Traicionar, Traicio-
nar) es el único equilibrio de estrategias estrictamente dominan-
tes (y también, el único equilibrio de Nash). 
Pero en el Dilema del Prisionero ocurre algo particular: intuiti-
vamente, (Traicionar, Traicionar) es peor que (Cooperar, Coope 
rar). Para entenderlo, usaremos algunos términos nuevos: 
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(Pareto Superior)  Decimos que un resultado o1 es 
estrictamente Pareto superior a un resultado o2 si y sólo 
si o1 es mejor para todos los jugadores que o2. 

 
Lo que sucede en el Dilema del Prisionero es que la conjunción 
de dos estrategias dominadas (la cooperación mutua) es estricta-
mente Pareto superior al equilibrio de estrategias estrictamente 
dominantes (que ambos traicionen). Autores como Peterson 
(2009, p. 215), lo interpretan de este modo: “lo que es óptimo 
para el grupo no es óptimo para el individuo”.  
Este problema ha generado mucha discusión entre filósofos, eco-
nomistas y politólogos. De hecho, el Dilema del Prisionero es el 
problema filosófico más estudiado en torno a la teoría de juegos, 
y existen miles de artículos académicos sobre el tema. Esto se 
debe a que involucra problemas de cooperación, leyes, castigo, 
normas sociales y convenciones, que son importantes para dife-
rentes disciplinas. 
 
Interpretaciones del Dilema del Prisionero 
 
Hay muchas interpretaciones filosóficas del Dilema del Prisio-
nero. Mencionaré dos lecturas clásicas y contrapuestas del di-
lema: la de Ken Binmore y la de David Gauthier. 
Binmore (2015) interpreta el dilema del modo más literal posi-
ble: el Dilema del Prisionero muestra que, en ciertos escenarios, 
cooperar es irracional. El Dilema del Prisionero se compara con 
otros dilemas sociales. En muchos casos, una persona puramente 
egoísta obtendría beneficios en ser la única que no coopera, 
mientras los demás sí cooperan: por ejemplo, si todos se vacunan 
de sarampión, pero yo no me vacuno (porque prefiero evitar un 
dolor en el brazo), quedaré protegido por la inmunidad de re-
baño. En general se llaman a estos sujetos “aprovechadores” 
(free riders). Claro que, si todos se aprovecharan, terminaríamos 
en resultados indeseables: esto se conoce como la “Tragedia de 
los comunes”. Ahora bien, el Dilema del Prisionero plantea el 
problema de si, individualmente, estas acciones son irracionales.  
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Según Binmore, es imposible justificar la cooperación en estos 
casos: “Es verdad que sería malo si todos se comportaran antiso-
cialmente, pero yo no soy todos; yo soy yo” (2015, p. 16). Según 
este autor, los agentes racionales deben traicionar en el Dilema 
del Prisionero, como bien indica la teoría de juegos estándar. 
Para Binmore, los defensores de la idea que cooperar es racional 
cometen varias falacias. Entre ellas, la Falacia de los Gemelos. 
Esto consiste en asumir que, como el juego es simétrico, el otro 
va a hacer lo mismo que yo. Bajo ese supuesto, voy a cooperar. 
Pero este supuesto no está justificado: lo correcto es asumir que 
el otro va a traicionarme (aunque yo coopere). De forma similar, 
el Imperativo Categórico (leído coloquialmente) diría que lo ra-
cional es hacer lo que es mejor que todos hagan al mismo tiempo; 
si así fuera, veré solo las “diagonales” del juego, y cooperaré. 
Pero el imperativo no se justifica por sí solo: bajo la regla de 
dominancia, lo racional es traicionar (aunque el otro coopere). 
Binmore propone comparar el Dilema del Prisionero con el juego 
de la Caza del Ciervo: 
 

 Cazar ciervo Cazar conejitos 

Cazar ciervo 15, 15 0, 5 

Cazar conejitos 5, 0 5, 5 

 
La idea de este juego (inspirado en un fragmento de Rousseau) 
es que dos agentes se debaten sobre qué cazar. Pueden cooperar 
y cazar un ciervo. O pueden ir individualmente a cazar conejos. 
El peor escenario es intentar cazar el ciervo individualmente; por 
hipótesis, decimos que eso es imposible, porque se requiere de 
dos personas para cazarlo. Aquí, hay dos equilibrios de Nash: 
que ambos vayan a cazar conejos individualmente, o que coope-
ren. A diferencia del caso del Prisionero, aquí la cooperación (ir 
a cazar el ciervo entre ambos) sí es un equilibrio de Nash; por 
eso, se trata de un juego cooperativo. Los agentes terminarán 
cooperando si creen que los demás van a cooperar también. Esto 
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es obviamente distinto al caso del Dilema del Prisionero, donde 
si asumimos que los demás cooperan, nos conviene traicionar. 
En resumen, para Binmore no hay nada especial en el Dilema del 
Prisionero: es un juego en donde cualquier agente racional debe 
traicionar. Si queremos entender la estructura de la cooperación, 
debemos estudiar otros juegos, como la Caza del Ciervo (o el 
Dilema del Prisionero iterado, que veremos luego). 
A diferencia de Binmore, Gauthier (2015) propone que lo racio-
nal en el Dilema del Prisionero es cooperar. Porque no debería-
mos identificar la racionalidad con la maximización de utilidad 
esperada individual. La situación de Cooperar-Cooperar es Pa-
reto superior a la de Traicionar-Traicionar, porque da más utili-
dad a ambos jugadores. Asimismo, la situación de Cooperar-
Cooperar es Pareto óptima (o Pareto eficiente), porque ninguna 
otra situación es mejor para ambos. 
En la interacción social, según Gauthier, el objetivo es sacar su-
ficiente provecho de una situación para todos. Por eso, en vez de 
buscar equilibrios de Nash, tenemos que buscar situaciones Pa-
reto óptimas. Si esta situación Pareto óptima además es Pareto 
superior a los equilibrios de Nash (como sucede en el Dilema del 
Prisionero), entonces definitivamente es la elección más racio-
nal. Según Gauthier: “en las interacciones, la irracionalidad no 
consiste en la falla de los individuos para obtener lo mejor en su 
situación particular, sino en la falla de todos los partícipes de la 
interacción en obtener lo mejor de su situación conjunta” (p. 39). 
Gauthier contrapone su visión cooperativa, donde los agentes 
“interactúan” entre sí, con la visión estándar, donde los agentes 
solamente “responden” uno al otro, y se ven entre sí como obs-
táculos para la búsqueda de bienestar individual. El enfoque 
cooperativo refleja la naturaleza social del ser humano, capaz de 
cumplir compromisos y actuar en beneficio a otros; el enfoque 
estándar está dogmáticamente convencido de que todas nuestras 
decisiones buscan principalmente el bienestar individual. 
En conclusión, para Gauthier, el Dilema del Prisionero muestra 
un choque entre dos conceptos de racionalidad: equilibrio de 
Nash y Pareto-optimalidad. En ocasiones ambos criterios coinci-
den, pero otras veces no. Además del choque entre los dos con-
ceptos de racionalidad, el Dilema del Prisionero muestra que el 
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concepto de Pareto-optimalidad es mejor que el de Equilibrio de 
Nash para situaciones de interacción, porque trae mejores resul-
tados.  

Convenciones y normas 

Algunos filósofos utilizaron los juegos cooperativos y el Dilema 
del Prisionero para ilustrar el surgimiento de convenciones y nor-
mas sociales. En su conocido libro Convention (1969), David Le-
wis propone que las convenciones son un tipo de juego de coor-
dinación: 

Ir al parque Ir al cine 

Ir al parque 1, 1 0, 0 

Ir al cine 0, 0 1, 1 

Un juego de coordinación es un tipo de juego cooperativo con 
distintos equilibrios de Nash, donde (en la forma más usual) los 
agentes salen beneficiados de hacer lo mismo. En este ejemplo, 
los dos agentes son viejos amigos, y solo se preocupan por estar 
juntos: no tienen preferencias estrictas por ir al parque o al cine.  
Otras convenciones podrían favorecer a algún agente: 

Hablar español Hablar inglés 

Hablar español 2, 1 0, 0 

Hablar inglés 0, 0 1, 2 

Esta tabla (conocida como “Guerra de los Sexos”) podría ilustrar 
una situación donde el Agente 1 es hispanohablante nativo, y el 
Agente 2 es angloparlante nativo. Los dos pueden hablar ambos 
idiomas decentemente, y deben definir en qué idioma conversar: 
cada uno prefiere hablar en su idioma nativo. 
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Este tipo de convenciones iluminan un problema clásico de la 
teoría de juegos: la necesidad de elegir entre equilibrios. La mul-
tiplicidad de equilibrios muestra que las convenciones son, en 
cierta medida, arbitrarias. La elección de equilibrios va a depen-
der de factores como la costumbre o las relaciones de poder. Bin-
more (1998) y más recientemente Vanderschraaf (2019) explo-
raron la idea de justicia como la búsqueda de equilibrios justos. 
Según estos autores, centrar la filosofía política en la búsqueda 
de equilibrios (en vez de situaciones ideales) permite llegar a es-
cenarios más sostenibles en el tiempo. 
Lo importante de las convenciones, entonces, es que las personas 
prefieren cumplirlas, en tanto suponen que los otros la cumplen. 
Esto distingue a las convenciones de las normas sociales, que 
traen cierto “costo” para los agentes. Según Bicchieri (2005), una 
norma social surge de un juego de “motivación mixta”, como el 
Dilema del Prisionero, donde hay motivación para cooperar y 
también para traicionar.24 Las normas sociales incluyen actos 
como tirar la basura en el tacho (y no en el suelo), pagar propina, 
o cumplir promesas. Aquí, podríamos vernos tentados a incum-
plir la norma. Para Bicchieri, la razón por la que cumplimos con 
las normas sociales es que sabemos que la mayor parte de la 
gente las cumple (“expectativa empírica”), y sabemos que se es-
pera que nosotros también cumplamos la norma (“expectativa 
normativa”), a veces bajo pena de castigo. En las convenciones, 
en cambio, basta que exista una “expectativa empírica” para se-
guirlas. 
 
Dilema del Prisionero iterado 
Muchos filósofos sostienen que las personas cooperan porque 
piensan a futuro: si hoy ayudo, mañana me ayudarán a mí. El 
mismo Hume (1739, p. 698) describió esta tendencia: “Aprender 
a prestar servicios a otra persona sin sentir por ella ningún afecto 
real, porque preveo que ésta me devolverá el favor esperando que 

 
24 La diferencia entre juegos de coordinación y juegos de motivación 
mixta fue desarrollada por Schelling (1960). Ese libro fue pionero en 
aplicar la teoría de juegos a contextos políticos y militares, y le valió el 
premio Nobel en 2005. 
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yo realice otro de la misma clase”. Un siglo antes, Hobbes (1651) 
propuso el famoso “argumento del necio”, donde sostiene que 
incumplir un pacto es auto-destructivo, porque excluye a ese “ne-
cio” de otros futuros pactos sociales. En torno a esa idea, distin-
tos autores exploraron qué sucede si el Dilema del Prisionero se 
juega repetidamente: ¿sigue siendo conveniente traicionar? 
En términos analíticos, puede probarse que, si la repetición es 
finita, y los agentes saben cuántas rondas tiene el juego, el equi-
librio será traicionar siempre (Luce & Raiffa 1957, p. 99).25  
Axelrod (1984) tuvo la interesante idea de investigar el problema 
usando simulaciones (un método bastante innovador para su 
época). Su proyecto es investigar qué pasa si ponemos a distintos 
jugadores a jugar repetidamente el Dilema del Prisionero, de 
modo que no solo pueden tener una estrategia como Cooperar o 
Traicionar, sino estrategias más complejas como “Cooperar 2 ve-
ces, Traicionar 2 veces, y así sucesivamente”, o incluso estrate-
gias relacionales, que dependen de lo que el otro haga. Se puede 
organizar un “torneo” entre distintas estrategias, y analizar a cuál 
le va mejor. Los partidos obviamente no son infinitos, pero los 
agentes no saben cuántas rondas tendrá cada partido (esto evita 
estrategias del estilo “Cooperar hasta la última ronda”).  
Algunas estrategias utilizadas fueron las siguientes: 
 

- Vengativo: Cooperar, mientras el otro no me traicione. Si el otro 
traiciona, después traiciono siempre. 
- “Ojo por ojo” o Reciprocador: Primero cooperar. Después, imitar 
lo que hizo el otro en la última jugada. 
- Traidor: Traicionar siempre. 

 
Naturalmente, el Traidor no puede perder un partido (como mu-
cho, puede empatar). Sin embargo, en un “torneo” uno puede 
evaluar cuántos puntos hace cada uno, y analizar en forma más 
global cuáles estrategias terminan obteniendo más puntos. Así 
como en el fútbol, no solo importan las victorias, sino también 
los goles que cada uno hace. 

 
25 La prueba es algo compleja, y presupone el concepto de equilibrio 
perfecto en subjuegos, que veremos más adelante. 
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No es difícil elaborar un “torneo” entre distintos jugadores con 
distintas estrategias. Armar un “partido” de dos es sencillo: en 
cada ronda, un jugador puede jugar (Coopera o Traiciona) te-
niendo en cuenta lo que hizo su oponente en rondas anteriores 
(excepto en la primera ronda, donde no tiene información pre-
via). De acuerdo con lo que hacen los jugadores en esa ronda, se 
computan los puntajes (siguiendo la tabla de puntajes definida 
anteriormente). Al final del partido sumamos los puntos de cada 
ronda y obtenemos el puntaje final de cada jugador. El jugador 
con más puntos gana ese partido. 
Para recrear las ideas de Axelrod, podemos pensar un torneo de 
los siguientes jugadores: 

- Cooperador: siempre coopera.
- Reciprocador: empieza cooperando, pero en las rondas si-
guientes hace lo que hizo el oponente.
- Traidor: siempre traiciona.

Ahora veremos cómo funcionó el torneo, jugando rondas de 80 
partidos uno contra uno: 

Cooperador Reciprocador Traidor 

Cooperador 160-160

Reciprocador 160-160 160-160

Traidor 240-0 82-79 80-80

Vemos que, si bien el traidor gana siempre (aunque en dos casos, 
con bajo puntaje), y el cooperador puede ser destruido por el trai-
dor, el reciprocador tiene puntajes altos en dos de los tres casos, 
y un puntaje razonable en el otro caso.  
Axelrod considera que el reciprocador es “el ganador” en el 
juego iterado del prisionero; de hecho, esta estrategia tuvo un re-
sultado notable en los “torneos” organizados por el autor.  
El resultado fue usado por Axelrod como una posible explicación 
de por qué existe la cooperación humana. Si la población fuera 
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reciprocadora, va a sacar ventajas de la cooperación, y va a poder 
anular a eventuales traidores. En cambio, si fuera traidora, nunca 
obtendrá los beneficios de la cooperación. Y si fuera simple-
mente cooperadora, no podrá neutralizar a eventuales traidores, 
que finalmente sacarán toda la ganancia. Por eso, desde un punto 
de vista “evolucionista”, la estrategia reciprocadora va a terminar 
imponiéndose a nivel poblacional.  
Esta idea de Axelrod también ha sido utilizada para argumentar 
que la cooperación no requiere de sentimientos altruístas, porque 
puede justificarse de forma egoísta (como sugiere la cita de 
Hume al principio de esta sección). Otros autores sostienen que 
el Dilema del Prisionero Iterado muestra, contra Hobbes, que el 
estado de naturaleza no es siempre un estado de caos, y que es 
posible llegar a equilibrios razonables sin un “Leviatán”. 
De hecho, a diferencia de lo que sucede en el Dilema del Prisio-
nero de una ronda (o de una cantidad finita de rondas), en la ver-
sión iterada indefinidamente dos agentes cooperativos que apli-
can “Ojo por Ojo” sí están en equilibrio. Podríamos pensarlo de 
este modo: si soy Reciprocador y el otro agente es Reciprocador, 
obtengo 2 en cada ronda.  No saco ventaja cooperando más, por-
que de hecho coopero en todos los pasos, y tampoco saco ventaja 
traicionando ocasionalmente, porque cada traición será castigada 
en el paso siguiente.26 
Las ideas de Axelrod fueron cuestionadas por autores posterio-
res. Rapoport et al. (2015) indican que el reciprocador no es el 
“ganador” natural de un torneo: quién será el “ganador” depende 
de quién juega el torneo. Por otro lado, Binmore (1998, p. 186) 
observa que una comunidad de reciprocadores no es el único 
equilibrio posible para el Dilema del Prisionero iterado (veremos 
otros posibles equilibrios en los ejercicios); por eso no podemos 
evitar el problema de la elección entre equilibrios, mencionado 
anteriormente. 

26 Para una prueba completa véase Binmore (2007), cap. 11. Técnica-
mente también existe una diferencia entre repetición infinita y repeti-
ción indefinida; en esta instancia, los tratamos como equivalentes. 
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Ejercicios  
 
1. Hacer un torneo del Dilema del Prisionero Iterado con estas 
características, haciendo que cada jugador juegue un partido con-
tra cada uno de los otros jugadores (pero no contra sí mismo): 

- Cada partido tiene 4 jugadas (iteraciones). 
- Un jugador es Alternador: empieza cooperando, después trai-
ciona, después coopera, etc. 
- Un jugador es Vengativo: coopera, pero si lo traicionan, de ahí 
en adelante siempre traiciona. 
- Otro jugador es Reciprocador: empieza cooperando, después 
hace lo mismo que hizo el otro jugador en la última jugada. 

 
2. En el Dilema del Prisionero iterado indefinidamente: 
a. ¿(Traicionar Siempre, Traicionar Siempre) es un equilibrio? 
b. ¿(Cooperar Siempre, Cooperar Siempre) es un equilibrio? 
c. ¿(Vengativo, Vengativo) es un equilibrio? 

Parte D: Paradojas y experimentos 
Del mismo modo que sucede con la teoría de la decisión están-
dar, la teoría de juegos enfrentó cuestionamientos a partir de cier-
tas paradojas y de resultados experimentales. 
Podríamos ver al Dilema del Prisionero como una paradoja res-
pecto al equilibrio de estrategias dominantes (el concepto más 
sólido de la teoría de juegos). Sin embargo, como vimos, autores 
como Binmore sostienen que no es una verdadera paradoja. In-
cluso los resultados empíricos muestran que, en un juego de una 
sola ronda, las personas suelen traicionar, tal como indica la teo-
ría de juegos (Andreoni & Miller 1993). 
El Dilema del Viajero (Basu 1994) es una interesante paradoja 
para los equilibrios de Nash. En este escenario, dos personas de-
ben decidir cuánto dinero van a obtener por un bien. Cada uno 
debe decir un número entre $2 y $100. Si dicen ambos el mismo 
número, obtienen ese dinero. Si uno dice menos que el otro, el 
que dijo menos obtiene ese dinero, con un premio de $2 (por ho-
nestidad). El que dijo el número más alto obtiene el número más 
bajo, menos un castigo de $2. Por ejemplo, si a dice $40 y b dice 
$90, a recibe $42 y b recibe $38. 
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Lo curioso del escenario es que, si bien no hay estrategias domi-
nantes, el único equilibrio de Nash es que ambos digan $2. Por-
que (a) si ambos dicen el mismo número n, ambos querrán haber 
dicho un número menos, y obtener n+1; y (b) si dicen números 
distintos, el que dijo el número mayor preferiría haber dicho el 
número menor n, y obtener n en vez de n-2. Si dicen $2 no pue-
den arrepentirse, porque no podían decir un número menor (y si 
decían un número mayor, obtenían $0). 
El equilibrio (2, 2) es muy poco intuitivo: si ambos decían $100, 
recibirían $100. De hecho, en escenarios experimentales, los 
agentes dicen números altos (Basu et al. 2011). Este juego puede 
usarse como crítica al equilibrio de Nash, en su rol descriptivo 
(porque los agentes no eligen así), y también normativo (porque 
no parece una forma razonable de elegir). Un modo de responder 
a esta paradoja es decir que los agentes piensan el juego de forma 
más “indefinida”: las opciones son “decir un número alto” y “de-
cir un número bajo”, y con esa matriz, que ambos digan números 
altos es un equilibrio de Nash (Basu 1994). 
Así como el equilibrio de Nash debe enfrentar la paradoja del 
viajero, el método de inducción hacia atrás se enfrenta a otras 
paradojas, como el juego del ciempiés (Rosenthal 1981): 
 

 
 
En este juego, los agentes tienen que decidir si “continuar” o “pa-
rar”; si ambos continúan hasta el final, ganan (3, 3). Aquí, el 
único equilibrio por inducción hacia atrás es que el jugador 1 se 
retire en la primera ronda. Sin embargo, eso lo deja con una uti-
lidad de 1. Un resultado muy poco satisfactorio. 
Binmore (1987) sostiene, a partir de esta paradoja, que el método 
de inducción hacia atrás no debe identificarse siempre con la 
elección racional. En versiones “largas” del juego del ciempiés 
(por ejemplo, con 100 pasos), la mínima probabilidad de que el 
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otro jugador no se comporte “racionalmente”, me llevará a con-
tinuar, al menos en las primeras rondas. 
Los resultados experimentales arrojan más luz sobre esta idea. 
Las personas, en general, deciden “continuar” en las primeras 
rondas. Pero como muestran Rapoport et al (2003), esto depende 
de los premios en juego. Si los premios monetarios son altos, las 
personas van a estar más cerca del equilibrio, es decir, de parar 
en la primera ronda. Esto rara vez puede evaluarse en un labora-
torio, donde no hay dinero para dar premios altos. Asimismo, si 
el juego es corto, las personas adultas suelen razonar de acuerdo 
con la inducción hacia atrás. Esto no necesariamente se correla-
ciona con el éxito: en el juego del ciempiés corto, los niños ob-
tienen más ganancia que los adultos (Brocas & Carrillo 2025). 
Estos resultados parecen confirmar la idea de que, si el juego es 
corto y los estímulos monetarios son altos, la inducción hacia 
atrás es un buen modelo del comportamiento racional. 
Además de la paradoja del viajero y el juego del ciempiés, otros 
argumentos se han presentado para evaluar los métodos y princi-
pios de la teoría de juegos. Actualmente existe la Teoría de Jue-
gos Conductual, que estudia la (conflictiva) relación entre la teo-
ría de juegos y el comportamiento humano. Como pudimos ver, 
los resultados paradójicos son utilizados por algunos para recha-
zar los métodos principales de la teoría de juegos (o al menos, 
rechazar su aplicabilidad general), mientras que otros intentan 
hacer encajar la teoría con los resultados, a partir de teorías refi-
nadas, o de lecturas alternativas de los escenarios.  

Ejercicio 

En el juego del ultimátum, el Agente 1 debe decidir cómo reparte 
100 dólares (en billetes de $1) entre él y el Agente 2. El Agente 
2 tiene el poder de rechazar la oferta, y dejar a ambos sin nada.  

1. ¿Cómo va a repartir el dinero el Agente 1 según la teoría de
juegos (más precisamente, según el razonamiento por inducción
hacia atrás)?



 
Diego Tajer /131 

 

2. ¿Cómo crees que se comportaría la gente en casos experimen-
tales?  
 
Parte E: Juegos de información incompleta 
 
Hasta aquí, discutimos juegos estratégicos y juegos dinámicos. 
Los juegos dinámicos que vimos, sin embargo, tienen una carac-
terística particular: se trata de juegos de información perfecta. En 
esta clase de juegos, los agentes siempre saben las jugadas que 
hace el otro agente. Un tipo de juego de información perfecta en 
el mundo real es el Tres en Raya (tic-tac-toe)27: cada jugada es 
visible, porque los jugadores deben escribir “X” o una “O” en la 
grilla de 3 por 3. Otros juegos podríamos entenderlos como de 
información incompleta: un ejemplo muy sencillo es el “piedra, 
papel o tijera”, porque tenemos que jugar sin saber qué estrategia 
eligió el otro jugador. 
En cierto sentido, podemos entender los juegos “estratégicos” 
vistos antes en este capítulo (el Dilema del Prisionero, “Piedra, 
papel o tijera”, etc.) como juegos de información incompleta, 
donde cada jugador debe elegir qué hacer sin saber qué hizo el 
otro jugador. 
En teoría de juegos, la información incompleta se suele escribir 
usando “conjuntos de información” (information sets). Un con-
junto de información es un conjunto de nodos, tales que el agente 
que debe tomar la decisión no puede saber si está en un nodo o 
en el otro. Todos los juegos de información incompleta tienen, al 
menos en cierto lugar, un conjunto de información. 
Por ejemplo, podríamos escribir el dilema del Prisionero como 
un juego dinámico con información incompleta: 
 

 
27 Este juego tiene distintos nombres, como “gato” (Chile), “tatetí” (Ar-
gentina), “michi” (Perú) y “tiqui” (Colombia).  
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El conjunto de información es señalado con la línea de puntos. 
Esto indica que el Agente 2 no puede saber en cuál de esos nodos 
está realmente. 
Los juegos de información incompleta también tienen un tipo de 
“solución”, que combina la inducción hacia atrás y los equili-
brios de Nash. Para eso es necesario introducir el concepto de 
“subjuego”. Conceptualmente, un subjuego es un “juego dentro 
de un juego”. Es decir, es un subconjunto del árbol original que 
tiene (i) un nodo central donde empieza el subjuego, y (ii) nodos 
terminales que indican los resultados del juego. Naturalmente, 
un subjuego no puede “cortar” elementos dentro de un conjunto 
de información; por lo tanto, un subjuego siempre va a incluir, 
no cortar, los conjuntos de información.  
Supongamos, por ejemplo, que tenemos un juego de información 
imperfecta, donde un agente debe decidir si jugar el Dilema del 
Prisionero (con información incompleta) o la Caza del Ciervo de 
forma secuencial (es decir, con información perfecta). Usaremos 
una escala de utilidad más tentadora para el Dilema del Prisio-
nero. El árbol del juego se vería así: 
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¿Cómo podríamos resolver este juego de información incom-
pleta? Del lado izquierdo, parece fácil: usaremos inducción hacia 
atrás. Pero del lado derecho no funciona nuestra receta original, 
porque el Agente 1 no sabe en cuál nodo está al tomar la última 
decisión. Incluso si pensamos que su última decisión será Trai-
cionar, no sabemos si su última decisión resultará en (30, 0) o 
(10, 10). Por eso, para estos casos apelamos al Equilibrio de 
Nash. Es decir, cuando un subjuego dentro de un juego se puede 
resolver mediante un Equilibrio de Nash, podemos suponer que 
los agentes serán racionales y llegarán a este equilibrio. Como 
hemos mostrado repetidas veces, en el Dilema del Prisionero, el 
único equilibrio de Nash es la traición de ambos.  
Entonces podemos pensar el juego de este modo: 
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Ahora sí, podemos hacer la inducción hacia atrás como corres-
ponde. Como veremos, el Agente 1 va a preferir jugar a la Caza 
del Ciervo de forma secuencial. 
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La palabra técnica para esta solución es “equilibrio perfecto en 
subjuegos” (Selten 1975), porque consiste en resolver el juego a 
partir de la solución de todos sus subjuegos. Es una extensión del 
equilibrio por inducción hacia atrás: el equilibrio perfecto en sub-
juegos, si la información es completa, equivale a la inducción 
hacia atrás (cada paso de la inducción hacia atrás resuelve un 
subjuego). Aquí también sucede que todo equilibrio perfecto en 
subjuegos será un equilibrio de Nash (aunque no al revés). 
Por último, puede notarse algo interesante respecto a la compa-
ración entre la Caza del Ciervo y el Dilema del Prisionero. La 
Caza del Ciervo tiene dos equilibrios de Nash: que ambos vayan 
a cazar el ciervo (15,15) y que ambos vayan a cazar conejos (5,5). 
De modo tal que, sin información contextual, no podemos saber 
si los agentes racionales harán una cosa o la otra. El Dilema del 
Prisionero, en cambio, tiene solo un equilibrio (la traición mu-
tua). En el Dilema del Prisionero, jugar de forma secuencial no 
altera la solución correcta: de modo secuencial o simultáneo, am-
bos agentes van a suponer que los otros agentes van a traicionar, 
y en consecuencia van a traicionar. En la Caza del Ciervo, que es 
un juego cooperativo, jugar de forma secuencial permite que el 
segundo agente sepa qué hizo el primero, y motiva una acción 
cooperativa. Autores como Skyrms (2002) exploraron la impor-
tancia de la información en estos juegos cooperativos. 
 
Ejercicio 
 
Alberto y Benito son dos hermanos políticos que se alternan el 
gobierno de la misma provincia hace décadas. En la nueva elec-
ción provincial, parte del pueblo les pide que se retiren. Si nin-
guno de los dos presenta candidaturas, esto será visto como un 
acto honrado. Sin embargo, si uno de los dos presenta candida-
turas (y el otro no), seguramente va a ganar, y destruirá al otro. 
Y si ambos se presentan por separado, van a perder. Alberto se 
plantea qué hacer: ¿juega secretamente o negocia con el hermano 
una lista conjunta? Resuelva esta situación a partir de este juego 
de información incompleta (donde Alberto es el Agente 1 y Be-
nito el Agente 2): 
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*Parte F: Estrategias mixtas y probabilidades 
 
La última parte de este capítulo sobre teoría de juegos va a ex-
tender un poco el enfoque respecto a lo visto anteriormente. En 
las secciones anteriores señalamos que ciertos juegos no tienen 
un equilibrio de Nash entendido de la forma usual. Por ejemplo, 
en el “Piedra, papel o tijera”, no hay ninguna situación en que 
ambos jugadores estén conformes con lo jugado: si uno ganó, el 
que perdió desearía haber jugado otra cosa, y si empataron, am-
bos desearían haber jugado otra cosa. 
Sin embargo, existe un posible equilibrio de Nash para estos jue-
gos. Para entenderlo hace falta combinar la teoría de juegos con 
la idea de maximización de utilidad, proveniente de la teoría de 
la decisión. Una forma de jugar la “mejor” estrategia posible, 
cuando no existe tal cosa literalmente, es usar estrategias mixtas. 
Por ejemplo, supongamos que yo sé que el Agente 2 va a jugar 
de este modo: primero tira un dado, y luego juega Tijera si sale 
1 o 2, Piedra si sale 3 o 4, y Papel si sale 5 o 6. Si yo (Agente 1) 
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supiera que el otro agente va a jugar esto, ¿qué estrategia me 
conviene adoptar? Podría jugar Tijera y ganaría con un tercio de 
probabilidades (cuando el otro juega Papel). Lo mismo sucedería 
si juego Papel, o también si juego Piedra. En resumen, no va a 
importar mucho qué estrategia pura decida usar finalmente.  
Ahora supongamos que yo (Agente 1) también tiro un dado (no 
el mismo dado que tira el otro jugador), y luego juego Tijera si 
sale 1 o 2, Piedra si sale 3 o 4, y Papel si sale 5 o 6. ¿Me conviene 
usar esta estrategia “mixta”? Veamos. La utilidad esperada de 
esta acción (llamémosla “A”) podríamos calcularla así: 
 

U1(A) = 1/3 × U1(Piedra) + 1/3 × U1(Tijera) + 1/3 × U1(Papel) 
 
Dado que, como dijimos anteriormente, U1(Piedra) = U1(Tijera) 
= U1(Papel), entonces podemos deducir que U1(A) = U1(Piedra) 
= U1(Tijera) = U1(Papel). De modo tal que esta estrategia mixta 
no es mejor, pero tampoco es peor, que las estrategias puras. 
Ahora podemos interpretar este fenómeno de forma más global. 
Supongamos que el otro agente adopta una estrategia randomi-
zadora, como tirar el dado, y yo también. En ese caso, ambos 
estaríamos haciendo lo mejor posible, suponiendo lo que hace el 
otro. Por lo tanto, estamos en un equilibrio de Nash. De este 
modo, incluso los juegos que no tienen equilibrios en estrategias 
puras pueden tener equilibrios en estrategias mixtas. 
Para encontrar un equilibrio de estrategias mixtas a partir de una 
matriz (es decir, a partir de un juego en forma estratégica), debe-
ríamos primero descartar las estrategias dominadas. Una vez que 
hago eso, puedo determinar estrategias mixtas para los jugado-
res, que resulten en un equilibrio de Nash. Una forma sencilla de 
encontrar equilibrios de estrategias mixas es hallar escenarios 
donde, como jugador, nos resulte indiferente hacer cualquier op-
ción (como vimos en el caso del “Piedra, papel o tijera”). 
Por ejemplo, supongamos que el juego estratégico tiene esta 
forma: 
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C D 

A 4, 2 5, 5 

B 3, 4 7, 3 

Este juego no tiene estrategias dominadas, ni tampoco tiene equi-
librios de Nash en estrategias puras. Entonces podemos obtener 
un equilibrio en estrategias mixtas. 
Primero debemos determinar en qué casos al Agente 1 le daría lo 
mismo hacer A que hacer B. Sería un caso donde U1(A) = U1(B). 
Supongamos que p fuera la probabilidad de que el Agente 2 haga 
C, y (1 - p) sea la probabilidad de que el Agente 2 haga D. En-
tonces: 

U1(A) = p × 4 + (1 - p) × 5 
U1(B) = p × 3 + (1 - p) × 7 

Para que ambas opciones le sean indiferentes al Agente 1, pode-
mos calcular p mediante una ecuación, asumiendo que U1(A) = 
U1(B): 

p × 4 + (1 - p) × 5 = p × 3 + (1 - p) × 7 
4p + 5(1 - p) = 3p + 7(1 - p) 
p = 2(1 - p) ⇨ p = 2 - 2p ⇨ 3p = 2 ⇨ p = 2/3 

Ya tenemos entonces un lado del equilibrio. El Agente 2 hace C 
con probabilidad 2/3 y D con probabilidad 1/3. 
Ahora hace falta obtener el otro lado, aunque es simétrico. Sea q 
la probabilidad de que el Agente 1 haga A, y (1 - q) la probabili-
dad de que haga B: 

U2(C) = 2q + 4(1 - q) 
U2(D) = 5q + 3(1 - q) 

Para que al Agente 2 le sea indiferente hacer C o D, la probabi-
lidad q podemos calcularla así, asumiendo que U2(C) = U2(D): 
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2q + 4(1 - q) = 5q + 3(1 - q)  
1 - q = 3q ⇨ 1 = 4q ⇨ q = 1/4 

 
Es decir, ahora ya encontramos nuestro equilibrio de estrategias 
mixtas: la estrategia del Agente 1 es hacer A con ¼ y B con ¾, 
mientras que la estrategia del Agente 2 es hacer C con 2/3, y ha-
cer D con 1/3. 
Un resultado importante en la teoría de juegos es que cualquier 
juego en forma estratégica tiene al menos un equilibrio de Nash, 
ya sea en forma pura o en forma mixta. Esa es, de hecho, la prin-
cipal contribución de la obra de Nash.  
Antes de terminar esta sección, hago dos observaciones. En pri-
mer lugar, el hecho de que un juego tenga equilibrios “puros” es 
compatible con que también tenga equilibrios “mixtos” (veremos 
un caso en los ejercicios). Por otro lado, un juego podría tener 
múltiples equilibrios mixtos; esto será más común en juegos más 
complejos, con más jugadores o más estrategias. De hecho, en-
contrar los equilibrios de un juego puede ser muy difícil. Aquí 
solamente desarrollamos una aproximación a este concepto para 
juegos sencillos de dos jugadores. 
 
Ejercicio 
 
1. Encuentre un equilibrio de estrategias mixtas para este juego 
 

 C D 

A 5, 4 3, 5 

B 4, 6 4, 3 

 
2. Encuentre un equilibrio de estrategias mixtas para el juego de 
Hablar inglés o español (conocido como “Guerra de los Sexos”): 
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Hablar español Hablar inglés 

Hablar español 2, 1 0, 0 

Hablar inglés 0, 0 1, 2 

 
 
Soluciones para el capítulo 3 
 
PARTE A  
1. Queda BF. 
2. AE y DH. 
3. Este juego tiene dos equilibrios de Nash: AC y BD. Sin em-
bargo, si borramos las estrategias débilmente dominadas, debe-
mos borrar B y también D. Nos queda solo AC. Esto muestra que 
el borrado de estrategias débilmente dominadas puede borrar al-
gunos equilibrios de Nash. 

PARTE B 
1. La solución es dejar que decida Clara: 
 

 
2.  
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a. La solución es (Invadir, Guerra normal):  
 

 
 
b. La forma estratégica asociada es: 
 

 Guerra nuclear Guerra normal 

No invadir 2, 2 2, 2 

Invadir 0, 0 3, 1  

 
Hay dos equilibrios de Nash: (No invadir, Guerra nuclear) y (In-
vadir, guerra normal). 
c. Si bien los equilibrios por inducción hacia atrás son siempre 
equilibrios de Nash, algunos equilibrios de Nash (como <No in-
vadir, Guerra nuclear>) no son equilibrios de inducción hacia 
atrás. Aquí, el equilibrio incluye una guerra nuclear autodestruc-
tiva, que es muy poco razonable para Estados Unidos. Estos ca-
sos se conocen como “amenazas no creíbles”, un concepto popu-
larizado por Schelling (1960). Schelling insistió en que la racio-
nalidad requiere tomar en cuenta las amenazas no-creíbles, y esto 
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sirvió para fundamentar la estrategia de la “disuasión nuclear”, 
predominante en la Guerra Fría.  

PARTE C 

1.  
Alternador vs. Vengativo: 
2, 2 | 3, 0 | 0, 3 | 1, 1 
Resultado: Empate 6-6 

Alternador vs. Reciprocador: 
2, 2 | 3, 0 | 0, 3 | 3, 0 
Resultado: gana Alternador 8-5 (si había otra ronda, empatan) 

Reciprocador vs. Vengativo: 
2, 2 | 2, 2 | 2, 2 | 2, 2 
Resultado: empate 8-8 

2. 
a. (Traicionar Siempre, Traicionar Siempre) sí es un equilibrio
porque si el otro traiciona siempre, no saco ningún provecho en
cooperar a veces; me conviene traicionar siempre.
b. (Cooperar Siempre, Cooperar Siempre) no es un equilibrio,
porque si el otro coopera siempre, yo sacaría ventaja traicio-
nando siempre (o incluso, traicionando a veces).
c. (Vengativo, Vengativo) sí es un equilibrio. Los agentes van a
cooperar siempre. Y uno no sacaría ventajas en traicionar en una
ronda: solo generaría la traición eterna del otro jugador.

PARTE D 
1. Si los agentes son egoístas y ambiciosos, el único equilibrio
(por inducción hacia atrás) es que el Agente 1 le ofrezca $1 al
Agente 2 (es decir, 1% del total), y que el Agente 2 lo acepte.
Después de todo, el Agente 2 debe elegir entre $1 o nada.
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2. Sin embargo, en experimentos, los agentes suelen ofrecer al-
rededor del 40% del pozo. Y las ofertas muy bajas son rechaza-
das en la mitad de los casos (Bicchieri 2005, p. 104). Esto suele 
explicarse bajo la idea de que las personas, además del apetito 
por dinero, tienen sentimientos de altruismo o justicia, y también 
sentimientos de venganza hacia los agentes injustos. 
 
PARTE E 
La solución es jugar en secreto, asumiendo que Benito rechazaría 
la negociación: 

 
PARTE F 
1. El juego está representado por esta matriz: 
 

 C D 

A 5, 4 3, 5 

B 4, 6 4, 3 

 
Supongamos que la probabilidad de que el agente 2 haga C es p, 
mientras que la probabilidad de que haga D es (1 - p). Entonces: 
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U1(A) = 5p + 3(1 - p) 
U1(B) = 4p + 4(1 - p) = 4 

 
Entonces U1(A) = U1(B) significa que: 

 
5p + 3(1 - p) = 4 ⇨ 5p + 3 – 3p = 4 ⇨ 2p = 1 ⇨ p = ½ 

 
Por otro lado, siendo q la probabilidad de que el agente 1 haga 
A, y 1-q la probabilidad de que el agente 1 haga B, podemos de-
finir: 
 

U2(C) = 4q + 6(1 - q) 
U2(D) = 5q + 3(1 - q) 

 
Entonces si U2(C) = U2(D) podemos saber que: 
 

4q + 6(1 - q) = 5q + 3(1-q) 
3(1 - q) = q ⇨ 3 - 3q = q ⇨ 3 = 4q ⇨ q = 3/4 

 
Obtenemos un equilibrio donde 1 hace A con 3/4 y B con 1/4, 
mientras que 2 hace C con ½ y D con ½. 
 
2. 
Con un razonamiento similar al del ejercicio anterior, obtenemos 
que el Agente 1 hace A con probabilidad 1/3 y B con probabili-
dad 2/3; y el Agente 2 hace C con probabilidad 2/3 y D con pro-
babilidad 1/3. Lo curioso en este caso es que en cualquier acto 
(por ejemplo, A), los agentes obtendrán una utilidad esperada de 
2/3; les convendría coordinar en algún equilibrio puro antes que 
usar esta estrategia mixta, porque se garantizan obtener al menos 
una utilidad de 1.    
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CAPÍTULO 4: ELECCIÓN SOCIAL 

Parte A: Antecedentes y teoría del voto 

Desde el origen de la civilización, los grupos han tenido que to-
mar decisiones colectivas, y para eso diseñaron distintos meca-
nismos. La teoría de la elección social estudia estos mecanismos 
y sus propiedades. Un método muy popular para decidir grupal-
mente si hacer determinada acción es el siguiente: 

1. Los que están a favor levantan la mano.
2. Contamos la cantidad.
3. Si la cantidad es mayor a la mitad de las personas presentes,
realizamos la acción.

Este método, conocido como voto por mayoría, es útil para de-
cidir entre dos opciones. Pero los mecanismos de voto a veces 
requieren decisiones más complejas, como ordenar las preferen-
cias entre opciones. Y ahí aparecen muchos problemas. 
Un método apto para elecciones entre distintas opciones fue pro-
puesto por Condorcet (1785). Supongamos que una comisión de 
tres personas (las llamamos sin mucho esfuerzo “1”, “2” y “3”) 
debe elegir entre cuatro candidatos para un puesto: Juan, Alicia, 
Pablo y Matilda. Luego de revisar el currículum y realizar entre-
vistas, los miembros del comité tienen las siguientes preferencias 
(las mejores opciones son las que están más arriba): 

1 2 3 
Juan Pablo Matilda 
Alicia Alicia Pablo 
Pablo Juan Alicia 
Matilda Matilda Juan 

Supongamos que el objetivo de la comisión no es solo elegir un 
ganador, sino también determinar un segundo puesto (en caso de 
que el ganador no pueda o no quiera aceptar). Es decir, la comi-
sión no debe elegir un candidato, sino generar un ranking nuevo. 
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¿Cómo debería proceder? El método de Condorcet nos sirve para 
resolver este tipo de casos. Es una versión del voto por mayoría 
que puede aplicarse cuando hay varias opciones. 
 
(Criterio de Condorcet)28   En el orden grupal, x ≥ y sii x ≥i y para 

la mitad o más de los agentes i. 
 

El criterio de Condorcet nos arrojará el siguiente resultado: 
 

Alicia > Juan, por el voto de 2 y 3 
Pablo > Alicia, por el voto de 2 y 3 
Pablo > Juan, por el voto de 2 y 3 
Todos > Matilda, por el voto de 1 y 2 

 
Entonces el ranking colectivo queda de este modo: 
 

Pablo > Alicia > Juan > Matilda 
 
Este método para generar rankings colectivos es muy útil, y aun 
actualmente suele usarse en distintos comités.  
El problema es que, como descubrió Condorcet, este método in-
tuitivo se ve afectado por paradojas. La paradoja más importante 
fue conocida como “Paradoja del Voto” o “Paradoja de Condor-
cet”. Supongamos que hay que elegir entre tres eventos (por 
ejemplo, tres gustos de helado). Y hay tres agentes votando, cu-
yas preferencias son las siguientes (llamaremos “perfil” a un con-
junto de preferencias individuales de distintos agentes): 
 

1 2 3 
a b c 
b c a 
c a b 

 
¿Qué ranking tendrá el grupo, a partir de este perfil? 

 
28 Terminológicamente, usaremos subíndices del tipo ≥i para hablar de 
preferencias de un individuo i, y al no usar subíndices nos referimos a 
las preferencias grupales.  
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Como veremos, el método de Condorcet resulta problemático en 
este caso particular, porque nos da el siguiente resultado: 

 
a > b por el voto de agentes 1 y 3 
b > c por el voto de agentes 1 y 2 
c > a por el voto de agentes 2 y 3 
 

Se genera entonces un ciclo de preferencias colectivas: 
 

(Ciclo)  a > b, b > c, c > a  
 
Es otras palabras, las preferencias “grupales” formadas mediante 
el método de Condorcet generan un ciclo, algo que generalmente 
prohibimos para cualquier escala de preferencia. Individuos con-
sistentes generan un grupo inconsistente. 
¿Cuánto revela la Paradoja de Condocet sobre la naturaleza del 
voto? Esperamos que el lector pueda tener un juicio propio hacia 
el final de este capítulo. Como resulta obvio, el método de Con-
dorcet no es el único método de decisión colectiva. Más adelante, 
veremos otros métodos de voto que no generan ciclos, como el 
de Borda. Sin embargo, estos métodos tienen otros problemas. 
 
Ejercicios 
 
1. Encuentre el ranking de Condorcet en este perfil de votos: 
 

1 2 3 
a b b 
b c a 
c a c 

 

2. Siglos antes de Condorcet, el filósofo español Ramón Lull 
(1232-1316) ideó un método de elección “de a pares”, publicado 
en su texto De Arte Electionis.29 El método de Lull es el si-
guiente: primero se vota la opción (x, y) por mayoría; luego, 

 
29 Puede encontrarse una traducción crítica del texto de Lull en Barens-
tein (2013). 
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quien gane esa votación se enfrenta a z; luego, quien gane esa 
votación se enfrenta a w; y así sucesivamente, hasta encontrar el 
último ganador. El método de Lull no produce ciclos, pero tiene 
otro problema, ¿cuál es? 
 
*Parte B: Blindar el voto por mayoría 
 
Algunos autores notaron que lo que falla en la paradoja de Con-
dorcet es que no hay acuerdos básicos: las personas desacuerdan 
sobre qué es lo mejor y qué es lo peor.  

 
Duncan Black (1948) formalizó esta idea en términos gráficos. 
Según este autor, el problema con los perfiles como el de la Pa-
radoja de Condorcet es que no hay un “pico único”. Es decir, no 
hay forma de dibujar los votos de los agentes {1,2,3} de modo 
tal que cada agente tenga un único pico. Siempre algún agente va 
a quedar en “V”. Por ejemplo, en el gráfico anterior (que repre-
senta los votos en la Paradoja de Condorcet), el votante 3 tiene 
dos “picos”. El lector puede comprobar que, sin importar cómo 
se dibuje el gráfico, algún agente tendrá dos picos.  
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Estos resultados llevaron a algunos autores a proponer una “res-
tricción de dominio”, es decir, condicionar de antemano los per-
files individuales o grupales que se admiten. Por ejemplo, po-
dríamos aceptar solamente perfiles donde todos los rankings ten-
gan un “pico único” (single-peaked preferences). Los perfiles 
con pico único se ven así: 

Podríamos escribir este gráfico como un perfil de votos: 

1: a > b > c 
2: b > a > c 
3: c > b > a 

Ahora, usando el método de Condorcet, el perfil resultante será 
b > a > c. 
Estos perfiles representan la idea de que hay cierto acuerdo bá-
sico entre los agentes sobre qué es (o no es) lo mejor (o lo peor). 
Por ejemplo, este perfil representa el acuerdo en que b no es la 
peor opción. Si nos restringimos de antemano a este tipo de per-
files, los ciclos paradójicos se evitan. Este tipo de soluciones, sin 
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embargo, suelen ser criticadas por dos razones. En primer lugar, 
su complejidad. Detectar que un perfil no puede representarse 
con “picos únicos” no es fácil, y se vuelve mucho más complejo 
cuando aumentan los agentes o las opciones. Una segunda crítica 
a esta estrategia es su falta de realismo: ¿Qué clase de método de 
voto pondría condiciones sobre los perfiles admisibles?  
Sin embargo, se ha explorado una forma realista de obtener per-
files como estos. Típicamente, una forma de obtener rankings de 
“pico único” es pedir a los agentes que elijan “aspectos”. Pode-
mos entenderlo con el siguiente ejemplo: la gente seguramente 
no puede ponerse de acuerdo sobre qué línea del subte (metro) 
de Buenos Aires es mejor que otra. Por ejemplo, algunos prefie-
ren la línea A (moderna, útil), otros la línea C (conecta dos esta-
ciones centrales), otros la línea D (bella estéticamente), etc. Pero 
si votan sobre aspectos específicos, como por ejemplo cuál línea 
de subte es más limpia, los desacuerdos van a minimizarse. Se-
guramente los agentes tienen ciertos acuerdos sobre qué línea de 
subte es más limpia, o cuál tiene los mejores vagones, etc. Si se 
vota sobre aspectos, es muy probable que los perfiles tengan un 
“pico único”. Ahora el problema será cómo integrar estos distin-
tos aspectos en un voto único. 
 
Parte C: Arrow y funciones de bienestar social 
 
Si Condorcet fue el impulsor de la teoría clásica del voto en el 
siglo XVIII, la moderna Teoría de la Elección Social (Social 
Choice Theory) nació con la obra de Kenneth Arrow (1951). Este 
autor formalizó las características centrales de los métodos de 
voto, probó algunos teoremas fundamentales y dio impulso a un 
nuevo desarrollo científico sobre estos temas. 
En el esquema de Arrow, cada agente aporta un ranking de pre-
ferencia individual (un elemento ya conocido en teoría de la de-
cisión). Un ranking de preferencia individual R debe ser com-
pleto (para todo a y b, aRb o bRa), transitivo (si aRb y bRc, en-
tonces aRc) y reflexivo (para todo a, aRa). Intuitivamente, aRb o 
a ≥ b se lee como “prefiero a sobre b, o me dan igual”. Definimos 
a > b o aPb (“prefiero a sobre b”) como (aRb & ¬bRa), y defini-
mos a ~ b o aIb (“soy indiferente entre a y b) como (aRb & bRa).  
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Un ranking de preferencias podría verse así: 
 
c 

b, d 
e 

a, f 
 
donde x > y se representa como que x está “arriba” de y, mientras 
que x ∼	y se representa como que x está al mismo nivel que y. 
Hasta aquí no hay nada nuevo respecto a las ideas de preferencia 
en la teoría de la decisión. 
Pero ahora entramos en los aspectos colectivos de la preferencia. 
Un perfil es una n-tupla de rankings de preferencias, <R1, …, 
Rn>, que representa las preferencias individuales de un conjunto 
de personas {1, …, n}.  
Por ejemplo, un perfil para los agentes 1-5 podría verse así: 

 
1 2 3 4 5 
c c a f a 
b, d a b a c 
e b c b d, e, f 
a, f d e c, d b 

   e, f d e 
   f 
 
A partir de un perfil, podemos “votar”. Una función de bienestar 
social es una función que a cada perfil dentro de un dominio le 
asigna un ranking de preferencias colectivo (que vendría a repre-
sentar el resultado del voto). Por ejemplo, una función dictatorial 
asigna a cada perfil <R1, …, Rn> la función Ri para cierto agente 
i (podría ser el agente 3). 
 
Teorema de Arrow  
¿Qué propiedades debería tener una función de bienestar social 
para que la consideremos “razonable”? Podríamos pensar en pro-
piedades básicas, como la siguiente: si todos individualmente 
prefieren a sobre b, entonces el grupo prefiere a sobre b (esta 
condición será conocida como Pareto Débil). 
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Naturalmente, hay distintos criterios. Para Arrow, una función 
de bienestar social f es satisfactoria cuando (además de arrojar 
un ranking completo y transitivo) cumple estas propiedades: 

(Pareto Débil) Si todos los agentes prefieren a sobre b, 
entonces la preferencia colectiva pone a sobre b. 

(Dominio Irrestricto) No hay ninguna restricción sobre 
los perfiles admitidos en el dominio de la función. 

(Independencia de Alternativas Irrelevantes) Para de-
terminar si colectivamente a > b, b > a o a ~ b, lo único 
relevante es cómo votan los agentes sobre a y b.  

(No-Dictadura)  No hay ningún dictador; i.e., no hay nin-
gún agente i tal que para todo perfil P, f(P) = Ri.  

La condición de Pareto Débil es fácil de entender, porque se trata 
de una regla de unanimidad: si todos los individuos del grupo 
prefieren cerveza antes que vino, el grupo prefiere cerveza antes 
que vino. El Dominio Irrestricto nos dice que el sistema de voto 
no depende de las preferencias de los agentes: en principio, cual-
quier preferencia debería ser admitida, en tanto cumpla con las 
propiedades fundamentales de transitividad y completitud. La In-
dependencia de Alternativas Irrelevantes propone que el cálculo 
del voto sea “enfocado”: si queremos establecer la preferencia 
social entre a y b, debería bastar con fijarnos en las preferencias 
individuales sobre estas dos opciones, y no sobre otras. La con-
dición de No-Dictadura también es auto-explicativa: un buen sis-
tema de elección no debería permitir que la elección social se 
base en hacer lo que un agente específico quiera hacer. 
Y aquí es cuando Arrow prueba el teorema principal de la teoría 
de la elección social, luego conocido como el “Teorema de Im-
posibilidad de Arrow”: 

(Teorema de Imposibilidad de Arrow)  
Si hay tres o más opciones, ninguna función de bienestar 
social puede satisfacer Pareto Débil, Dominio Irrestricto, 
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Independencia de Alternativas Irrelevantes y No-Dicta-
dura. 

 
El teorema muestra que ningún método de voto satisface las cua-
tro propiedades deseables al mismo tiempo. Una prueba sencilla 
del teorema aparece en la próxima sección.  
Se considera que el Teorema de Arrow es el principal resultado 
en la teoría de la elección social, y muchos (como veremos más 
adelante) lo han leído como un golpe fatal contra la idea misma 
de democracia.  
 
Ejercicio 
Muestre que una dictadura, es decir, un método donde el grupo 
decide el ranking del jugador i (el dictador), satisface Pareto Dé-
bil e Independencia de Alternativas Irrelevantes, además de arro-
jar un ranking completo y transitivo. 
 
*Parte D: Prueba del Teorema de Arrow 
Hay muchas pruebas del Teorema de Arrow. No nos interesa ne-
cesariamente la formulación original. Distintas pruebas fueron 
desarrolladas, y quizás las más conocidas son la original de 
Arrow (1951) y la versión de Sen (1970b).  
La prueba que haremos es más sencilla, y se basa en el texto “A 
straighforward proof of Arrow’s theorem”, de Mark Fey (2014). 
La estructura de la prueba, tal como la presentamos aquí, es la 
siguiente: 
 

- Primero, determinamos que respecto a dos opciones a/b, hay 
un agente que “voltea” las preferencias sobre a > b. (Paso 1) 
- Luego, vamos mostrando que ese agente es decisivo sobre 
otras opciones. Un agente es decisivo sobre x > y cuando, si el 
agente prefiere x > y, entonces el grupo entero prefiere x > y. 
(Pasos 2-5) 
- Luego de varios pasos similares, llegamos a la conclusión de 
que ese agente es decisivo sobre el par (a, b). (Paso 6) 
- Finalmente, apelamos a los lemas previos para probar que, si 
el agente es decisivo sobre un par, es decisivo sobre todos. Por 
lo tanto, es un dictador. (Paso final) 
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Enunciado del Teorema: 
Partimos de un método de elección f que satisface: 
 

- Pareto Débil: si todos los agentes j prefieren x >j y, entonces 
el grupo prefiere x > y. 
- Dominio Irrestricto: El dominio de la función f es irrestricto, 
es decir, cualquier perfil es admisible. 
- Independencia de Alternativas Irrelevantes (IAI): si tenemos 
un perfil P donde f(P) pone a x sobre y, y tenemos otro perfil 
P’ donde los agentes tienen las mismas preferencias respecto 
al par (x, y), pero distintas preferencias respecto a otros even-
tos, entonces f(P’) también pone a x sobre y.  
 

Con esas premisas, establecemos que hay un agente i que es un 
dictador: para todas las opciones x e y, si x >i y, entonces x > y 
(es decir, si i prefiere x sobre y, la sociedad prefiere x sobre y). 
 
Prueba: 
 
Paso 1: hay un agente i que voltea las preferencias sobre a/b. 
Supongamos el siguiente perfil: 
 

R1 … Rn 
a  a 
b  b 
…  … 

 
Aquí, por Pareto Débil, el grupo decide a > b. 
Ahora supongamos otro perfil: 
 

R1 … Rn 
b  b 
a  a 
…  … 

 
Aquí, por Pareto Débil, el grupo decide b > a. 
Ahora vamos generando perfiles “intermedios”. A partir del pri-
mer perfil, donde todos votan a > b, damos vuelta a/b en cada 
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agente, empezando por el Agente 1. En algún momento el grupo 
pasará a votar b > a (esto podría pasar al final, el tema es que en 
algún momento va a pasar). 
Detectamos el agente que “da vuelta” a la preferencia. Es decir, 
el agente i donde: 

Perfil P1 
Ri- Ri Ri+ 
b a a 
a b b 
… … … 

nos da que a > b, pero… 

Perfil P2 
Ri- Ri Ri+ 
b b a 
a a b 
… … … 

nos da que b > a. 
(“Ri-” son todos los agentes hasta i, y “Ri+” son todos los agen-
tes después de i). 

Paso 2: Para todo c, el individuo i es decisivo sobre b > c. 
Usamos el perfil P1, pero ubicando una c: 

Ri- Ri Ri+ 
b a a 
c b b 
a c c 
… … … 

Por Independencia de Alternativas Irrelevantes (de ahora en más, 
“IAI”) con el perfil P1, colectivamente sucede que a > b. 
También tenemos b > c por Pareto Débil. 
Por Transitividad obtenemos a > c. 
Ahora bien, ¿por qué el agente i decide sobre b > c? 
Supongamos que ahora tenemos este perfil: 
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Ri- Ri Ri+ 
b/c b a 
a a b/c 
… c … 
… … … 

La terminología “b/c” significa que los otros agentes pueden pre-
ferir b > c, c > b o b ~ c.  
Aquí, el grupo va a seguir prefiriendo b > c. Esto se debe a que, 
por IAI respecto al perfil P2, el grupo establece b > a, y por IAI 
respecto al perfil anterior, también a > c (dado que la ubicación 
relativa de a y c no ha cambiado). Entonces por Transitividad, 
obtenemos b > c.  
Esto es independiente de lo que prefieran otros agentes sobre (b, 
c), por eso el agente i es decisivo sobre b > c. 
El mismo estilo de prueba lo repetiremos para otros casos. 

Paso 3. Para todo c, el individuo i es decisivo sobre a > c. 
Supongamos que tenemos este perfil: 

Ri- Ri Ri+ 
a/c a a/c 
b b b 
… c … 
… … … 

Por Pareto Débil, sabemos que a > b. 
Dado que i es decisivo sobre b > c (Paso 2), sabemos que b > c. 
Entonces por Transitividad a > c. 
Esto es independiente de lo que prefieran otros agentes sobre (a, 
c), por eso el agente i es decisivo sobre a > c. 

Paso 4: Para todo c, el individuo i es decisivo sobre c > a. 
Supongamos que tenemos este perfil: 
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Ri- Ri Ri+ 
b c c 
c a a 
a b b 
… … … 

 
Por IAI respecto al perfil P1, sucede que a > b. 
Por Pareto Débil tenemos c > a. 
Por Transitividad tenemos c > b. 
Ahora consideremos perfiles de esta forma: 
 

Ri- Ri Ri+ 
b c a/c 
a/c b b 
… a … 
… … … 

 
Por IAI respecto al perfil P2, tenemos b > a. 
Por IAI respecto al perfil anterior, tenemos c > b. 
Por Transitividad tenemos c > a. 
Esto es independiente de lo que prefieran otros agentes sobre 
(c, a), por eso el agente i es decisivo sobre c > a. 
 
Paso 5: Para todo c, el individuo i es decisivo sobre c > b. 
Ahora consideremos perfiles de esta forma: 
 

Ri- Ri Ri+ 
a c a 
b/c a b/c 
… b … 
… … … 

 
Por Pareto Débil, sabemos que a > b. 
Por Paso 4 (el agente i es decisivo sobre c > a) sabemos que c 
> a. 
Por Transitividad tenemos que c > b. 
Esto es independiente de lo que prefieran otros agentes sobre 
(c, b), por eso el agente i es decisivo sobre c > b. 
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Paso 6: El individuo i es decisivo sobre b > a y sobre a > b. 
Supongamos este perfil: 
 

Ri- Ri Ri+ 
a/b a a/b 
… c … 
… b … 
… … … 

 
Por Pareto Débil, sabemos que a > c. 
Por el Paso 5 (i es decisivo sobre c > b), sabemos que c > b. 
Por Transitividad obtenemos a > b.  
Lo mismo ocurre para b > a, usando este perfil: 
 

Ri- Ri Ri+ 
a/b b a/b 
… c … 
… a … 
… … … 

 
Aquí, por Pareto Débil sabemos que b > c. 
Por Paso 4 (i es decisivo sobre c > a) sabemos que c > a. 
Entonces por Transitividad obtenemos b > a. 
 
Paso final: El agente i es un dictador. 
Por el Paso 6, sabemos que i es dictador sobre (a, b), i.e. es deci-
sivo sobre a > b y sobre b > a. 
Probaremos que es dictador sobre cualquier otra opción (x, y). 
Consideremos este perfil: 
 

Ri- Ri Ri+ 
x/y x x/y 
a/b a a/b 
… b … 
… y … 
… … … 

 
Por Paso 4 (i es decisivo sobre c > a), tenemos x > a. 
Por Paso 6 (i es decisivo sobre a/b), tenemos a > b. 
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Por Paso 2 (i es decisivo sobre b > c), tenemos b > y. 
Por Transitividad, tenemos x > y. 
(Para probar que es decisivo sobre y > x, solo cambiamos de lu-
gar x con y). 

QED. 

Ejercicios 

1. Asumiendo Dominio Irrestricto, muestre que si hay tres opcio-
nes (a, b, c), no puede suceder que un agente i sea decisivo sobre
a > b, otro agente j sea decisivo sobre b > c, y otro agente k sea
decisivo sobre c > a.

2. Asumiendo Dominio Irrestricto y Pareto Débil, muestre que si
hay tres opciones (a, b, c), no puede suceder que un agente i sea
decisivo sobre a > b y otro agente j sea decisivo sobre b > c.

Parte E: Lecturas del Teorema de Arrow 

¿Cómo podríamos interpretar el Teorema de Arrow? Como suele 
suceder en otros debates de Filosofía Política, la lectura que ha-
gamos va a depender de nuestra inclinación ideológica. 
En principio, el teorema establece la incompatibilidad entre cua-
tro propiedades: No-Dictadura, Independencia de Alternativas 
Irrelevantes, Dominio Irrestricto y Pareto Débil. Muchas lecturas 
se concentran en la incompatibilidad entre No-Dictadura e Inde-
pendencia de Alternativas Irrelevantes. Como veremos adelante 
con más detalle, la Independencia de Alternativas Irrelevantes 
garantiza la no-manipulabilidad del voto. Entonces, una forma 
relativamente neutral de leer el teorema es decir que, si queremos 
un sistema democrático, tenemos que aceptar cierto nivel de ma-
nipulabilidad. 
Uno de los libros más importantes en la tradición de la Teoría de 
la Elección Social es Liberalism against populism (1987) de Wi-
lliam Riker. Según Riker, el Teorema de Arrow muestra los lí-
mites del “populismo”, entendido como la tradición política que 
se nutre de Rousseau, donde el gobierno surge de una voluntad 
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popular expresada mediante el voto. En el enfoque de Riker, el 
teorema de Arrow muestra que este tipo de gobierno es imposi-
ble, porque no hay una “voluntad popular” (si la hubiera, sería 
inconsistente o absurda). Y el sistema de voto popular solo favo-
rece los mecanismos de manipulación. 
En cambio, según Riker, el teorema funciona como justificación 
de una versión muy mínima del liberalismo republicano. Es de-
cir, de la corriente que él atribuye a Madison, según la cual la 
función del voto es muy limitada, y se reduce a controlar y vetar 
lo que hacen los gobernantes: “Todo lo que las elecciones hacen 
o deben hacer es permitir que la gente se deshaga de sus gober-
nantes” (Riker 1987, p. 244).  
Podríamos ver la teoría de Riker como inspirada parcialmente en 
Joseph Schumpeter, un economista austríaco que previamente a 
Arrow defendió un tipo de democracia muy limitada. Para 
Schumpeter, en su clásico libro Capitalismo, Socialismo y De-
mocracia (1949), la democracia “populista” era peligrosa, y lo 
mejor que podemos esperar de la democracia es un voto para ele-
gir élites. Es decir, la democracia es una forma de elegir entre 
proyectos políticos sobre los que, más adelante, no tendremos 
demasiada influencia. Si se quiere, podríamos leer el modelo de 
Schumpeter como una visión aristocrática (o pesimista) de la de-
mocracia. Un politólogo más actual que defiende las ideas de 
Schumpeter es Przeworski (2010). Según este autor, no podemos 
esperar mucho de la democracia, más allá de un sistema recu-
rrente de votación. 
Esta corriente “pesimista” se contrapone al enfoque de democra-
cia deliberativa, que postula un sistema democrático donde la 
participación ciudadana va más allá de la representación indi-
recta en el congreso o el gobierno. Más adelante veremos cómo 
otro resultado de Condorcet se suele usar a favor de este tipo de 
sistema político. 
Recién entrado el siglo XXI, muchos autores empezaron a cues-
tionar las lecturas “antidemocráticas” del Teorema de Arrow, es-
pecialmente la lectura dominante de Riker. Un autor que se tomó 
el trabajo de responder punto por punto a Riker fue Mackie 
(2003). Según Mackie, la visión democrática no defiende que el 
voto expresa la voluntad popular directamente, sino que es una 
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forma aproximada de expresarla. Rousseau (1762, p. 60) ya se-
ñalaba que la voluntad general no puede identificarse con la “vo-
luntad de todos”, entendida como la suma de voluntades indivi-
duales; e incluso Arrow (1951) parece sugerir algo similar en el 
último capítulo de su libro (aunque esto abre el problema de 
cómo hallar la voluntad general, si no es por medio del voto). 
Mackie señala también que autores como Riker se enfocan de-
masiado en el efecto de la manipulación y los posibles votos in-
coherentes, pero argumenta (a partir del análisis de casos histó-
ricos) que tales fenómenos no se dan tan frecuentemente. 
Otros autores como Christian List y John Dryzek (2003) propo-
nen una “reconciliación” entre la Teoría de la Elección Social y 
la democracia deliberativa, las dos corrientes que consideran 
“dominantes” (aunque usualmente contrapuestas) en la teoría po-
lítica contemporánea. La idea general de List y Dryzek es que el 
aspecto deliberativo nos permite tener preferencias mejor “orde-
nadas”, y de ese modo evitar ciclos. Por ejemplo, una buena de-
liberación podría llevarnos a generar perfiles de “pico único”. 
 
 
Parte F: Soluciones al Teorema de Arrow 
 
Como podríamos esperar, hay distintas estrategias para bloquear 
al Teorema de Arrow. Las estrategias suelen atacar conceptual-
mente alguna de las premisas del teorema. 
 
Voto sin Independencia: el método de Borda 
La respuesta más común al Teorema de Arrow es el rechazo de 
la Independencia de Alternativas Irrelevantes. Esto puede ha-
cerse buscando un método que, a diferencia del de Condorcet, no 
satisfaga esta propiedad. 
Hay muchos métodos alternativos al de Condorcet. Por ejemplo, 
uno podría aplicar el método de Borda, propuesto por el mate-
mático Jean-Charles de Borda en 1770: 
 

(Método de Borda para órdenes estrictos)  
Cada persona tiene un ranking de n objetos. Los prime-
ros puestos valen n. los segundos puestos valen n-1… así 
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sucesivamente, hasta que los últimos puestos valen 1. El 
ranking final se determina sumando los puntos de cada 
opción. 

Por ejemplo, supongamos que el perfil es P1: 

1 2 3 
a a c 
b b d 
c d b 
d c a 

El puntaje de a será 4 + 4 + 1 = 9. El puntaje de b será 3 + 3 + 2 
= 8. El puntaje de c será 2 + 1 + 4 = 7. Y el puntaje de d será 1 + 
2 + 3 = 6. Entonces el ranking final será:  a > b > c > d.  
El método de Borda no puede generar ciclos por razones pura-
mente matemáticas (lo único que hace este método es darle un 
puntaje a cada opción). Cuando el método de Condorcet genera 
ciclos, el método de Borda genera empates. 
Una característica importante del método de Borda (y otros simi-
lares) es que, aunque sí satisface Pareto Débil (la prueba queda 
al lector), no satisface Independencia de Alternativas Irrelevan-
tes. Por ejemplo, imaginemos este perfil P2:  

1 2 3 
a a b 
b b d 
c d c 
d c a 

Este perfil es casi idéntico al anterior, pero el agente 3 intercam-
bió b por c. Ahora el ranking final cambia: El puntaje de a es 4 
+ 4 + 1 = 9; el puntaje de b es 3 + 3 + 4 = 10, el de c es 2 + 1 + 1
= 5, y el de d es 1 + 2 + 3 = 6. Es decir, ahora queda b > a > d >
c. Aquí vemos que no se cumple la Independencia de Alternati-
vas Irrelevantes, porque los votos sobre {a, b} son idénticos a los
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del perfil P1 (1 prefiere a sobre b, 2 prefiere a sobre b, y 3 pre-
fiere b sobre a), pero el resultado final respecto a estas dos op-
ciones es distinto. 
La violación de Independencia de Alternativas Irrelevantes per-
mite un fenómeno llamado manipulabilidad. La forma más sen-
cilla de entender la manipulabilidad es a partir de una regla de 
elección social. Una regla de elección social es una función que, 
a partir de un perfil, arroja una opción ganadora (o un conjunto 
de opciones ganadoras). Por ejemplo, la regla de Borda puede 
verse como una función de elección social donde gana la opción 
que obtuvo más puntos: en el perfil P1 gana la opción a y en P2 
gana la opción b. Decimos que un método de elección social es 
manipulable cuando un agente podría mentir sobre sus preferen-
cias reales, y obtener un ganador más preferible que el que hu-
biese obtenido votando honestamente. Para ilustrarlo, podríamos 
imaginar que las preferencias reales son las de P1, pero en una 
votación el agente 3 mintió sobre sus preferencias (y presentó su 
orden de P2) para lograr un resultado más preferible para él (que 
gane b en vez de a).  
La manipulabilidad está en todos nuestros sistemas de voto: por 
ejemplo, cuando votamos un candidato que no es nuestro prefe-
rido (pero que tiene chances de ganar), para que no gane otro 
candidato que nos gusta aún menos. 
Problemas similares se aplican a nociones cardinales de decisión 
colectiva. Aunque las escalas cardinales suelen aportar informa-
ción suficiente para generar un ranking colectivo sin ciclos, se 
suele defender que estas escalas dan demasiada información. 
Así, abren la puerta para estrategias variadas de manipulación.  
Imaginemos unos padres que deben darle de comer a dos hijos. 
Uno de los hijos quiere comer pastas, y el otro quiere comer 
carne. Si solo cuentan los rankings, es imposible tomar una de-
cisión racionalmente. Sin embargo, uno de los hermanos se pone 
a llorar y gritar, diciendo “¡odio la carne, amo las pastas, por fa-
vor hagan carne o voy a sufrir!”. Los padres, al darse cuenta lo 
importante que es esto para el niño, deciden hacer carne. Luego 
de comer, el niño revela que sus berrinches fueron puro teatro. 
Así los padres aprenden el significado de la manipulabilidad. La 



164/ Una introducción a la epistemología formal 

 

próxima vez, les dirán a sus hijos: “digan qué prefieren, pero por 
favor, sin llorar”. 
Un problema relacionado es la dificultad para comparar utilida-
des de distintas personas. Esto afecta principalmente a los puntos 
de vista más utilitaristas. Si el objetivo de una decisión colectiva 
es maximizar el bienestar del grupo, un joven quisquilloso que 
sufre muchísimo por cualquier decisión que no satisfaga sus de-
seos individualistas tendría prioridad sobre otras personas que, 
con preferencias igualmente respetables, sufren menos. Este pro-
blema porque aparece incluso si asumimos la sinceridad de los 
individuos. Esta es otra razón por la que en la teoría de la elec-
ción social se suele trabajar con escalas ordinales.  
 
Restricciones de dominio 
Podemos encontrar soluciones muy variadas al Teorema de 
Arrow. Por ejemplo, hay contextos donde parece más justificada 
una restricción de dominio. En la parte B mencionamos un tipo 
de restricción de dominio: la restricción a perfiles de pico único. 
Aquí nos centraremos en otra opción. 
En un artículo ya clásico, Okasha (2011) sostuvo que el Teorema 
de Arrow también aplica al amalgamiento de evidencia cientí-
fica: no hay modo racional de decidir entre hipótesis cuando dis-
tintos experimentos resultan en preferencias distintas entre hipó-
tesis, porque deberían cumplir los criterios de Arrow y entonces 
ninguna opción será satisfactoria. En Cresto & Tajer (2020) sos-
tenemos que, para el caso de la ciencia empírica, muchas veces 
podemos apelar a restricciones de dominio. Para eso usamos la 
tesis de Duhem-Quine: según esta conocida tesis sobre el funcio-
namiento de la ciencia, las hipótesis centrales son evaluadas en 
conjunto con hipótesis auxiliares. Como consecuencia, no cual-
quier orden es individualmente racional. Con esas restricciones, 
probamos que hay funciones que satisfacen Pareto Débil e Inde-
pendencia de Alternativas Irrelevantes. 
Para dar una idea de cómo el rechazo de Dominio Irrestricto 
puede salvarnos del problema, pensemos en el siguiente escena-
rio. Hay que elegir qué comer, entre cuatro opciones: 
 

- Nuggets en McDonald’s 
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- Hamburguesa en McDonald’s 
- Ensalada César en Green Salad 
- Sandwich de atún en Green Salad 

Ahora supongamos que no todos los perfiles son admisibles. 
Pensamos, por ejemplo, que si te gusta la comida basura vas a 
preferir McDonald’s, y si te gusta la comida sana vas a preferir 
Green Salad. Entonces solo admitimos perfiles donde esas pre-
ferencias vienen en bloques ordenados estrictamente (sin empa-
tes entre bloques), como estos: 
 
1   2   3 
Nuggets, hamburguesa ensalada   sandwich de atún 
Sándwich de atún sandwich de atún  ensalada 
Ensalada  hamburguesa  nuggets 
   nuggets   hamburguesa 
 
El Agente 1 prefiere la comida chatarra a la comida sana, y los 
Agentes 2 y 3 prefieren lo contrario. Dentro de cada bloque, uno 
puede preferir lo que quiera. 
Ahora pensemos en la siguiente regla de elección: 
 
 (Semi-dictadura) 

En un grupo de n > 2 personas, decimos que el Agente 1 
decide sobre los bloques, y el Agente 2 decide sobre los 
órdenes internos. 
 

Si fueran los agentes del grupo anterior, el resultado sería: 
 

hamburguesa > nuggets > ensalada > sandwich de atún 
 

Podemos ver que obtenemos un orden coherente que es distinto 
al de cualquiera de los tres agentes. Es decir, no hay Dictadura. 
También hay Pareto Débil e Independencia de Alternativas Irre-
levantes (la prueba queda al lector, pero es fácil). 
Estas reglas no podrían funcionar en dominios irrestrictos, por-
que generarían inconsistencias; es necesario que los perfiles es-
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tén ordenados “en bloques”. Nótese que el resultado no es terri-
blemente prometedor, porque si bien no tenemos dictadores, 
ahora tenemos semi-dictadores.  

Ejercicios 

1. Determine el ranking de Borda a partir de este perfil.

1 2 3 
a b d 
b c c 
c a b 
d d a 

2.* Diseñe alguna estrategia de manipulación para el jugador 3. 

2. Muestre que el método de semi-dictadura en dominios restrin-
gidos “por bloque” satisface Pareto Débil y es completo.

3.* Muestre que el método de semi-dictadura en dominios res-
tringidos “por bloque” satisface Transitividad. 

Parte G: Paradoja Del Liberal Paretiano 

Otra paradoja muy conocida en Teoría de la Elección Social, mu-
cho más sencilla que la de Arrow, fue mostrada por Amartya Sen 
(1970a). Más adelante se llamó a esta paradoja “Paradoja del Li-
beral Paretiano”. 
La idea de Sen es, a grandes rasgos, mostrar cierta tensión entre 
derechos individuales y decisiones colectivas. En el ideario libe-
ral (sea de derecha o de izquierda), hay un conjunto de decisiones 
que pertenecen a la “esfera privada” y sobre eso no pueden deci-
dir los otros (por ejemplo, el color de mi ropa, o el próximo libro 
que voy a leer); y hay otro conjunto de decisiones que pertenecen 
a la “esfera pública”, y sobre eso podemos decidir colectiva-
mente (por ejemplo, cuánto voy a pagar de impuestos). La para-
doja cuestiona esa distinción.  
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Los derechos individuales son entendidos de este modo:  
 
(Liberalismo)  Para cada agente i, hay un par de alternativas a 

y b sobre las cuales el agente i es dictador. 
 

La idea es que un agente es dictador sobre algunas cosas dentro 
de su esfera privada, como su color de pelo, o la película que va 
a ver esta noche. 
La paradoja del liberal paretiano nos dice lo siguiente: 
 
(Paradoja del liberal paretiano)   
Ninguna función de bienestar social puede satisfacer Libera-
lismo, Dominio Irrestricto y Pareto Débil. 

Prueba: Supongamos que el Agente 1 es dictador sobre 
(a, b) y el Agente 2 es dictador sobre (c, d). Obviamente 
(a, b) y (c, d) no pueden ser el mismo par, porque si lo 
fueran, habría contradicción en caso de que a >1 b y b >2 

a. Ahora bien, (a, b) y (c, d) no pueden tener un elemento 
en común. Porque supongamos que lo tuvieran, por 
ejemplo, a = d. Entonces los pares son (a, b) y (c, a). 
Ahora supongamos que a >1 b y c >2 a. Y que para toda 
la sociedad b > c. Entonces (por Pareto Débil) se genera 
un ciclo y no puede haber función de bienestar social. 
Ahora, supongamos que no tienen ningún elemento en 
común. Y ahora decimos que a >1 b y c >2 d. Pero todos 
los agentes pueden votar unánimemente b > c y d > a, 
generando otro ciclo (por Pareto Débil).  QED. 
 

El teorema tuvo distintas lecturas y generó una extensa discu-
sión. Tal como sucedió en el caso de Arrow, la interpretación del 
mismo Sen fue algo ambigua: su intención era mostrar una in-
compatibilidad entre el paretianismo y los derechos individuales, 
sin proponer ninguna salida en especial. En textos siguientes 
(Sen 1975), parece haber defendido un rechazo o restricción del 
principio de Pareto Débil. 
Quizás la respuesta más influyente al desafío fue la de Nozick 
(1974, p. 166). Este autor, representante del pensamiento liber-
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tario, propone que el voto viene después de los derechos indivi-
duales. Es decir, aquellos eventos (a, b) sobre los cuales decide 
el Agente 1 no pueden formar parte de un conjunto de eventos 
sobre los que decide el resto de la sociedad. Entonces si a >1 b y 
c >2 d, la sociedad no puede decidir libremente sobre eventos 
como b y c. Aunque Nozick no presentó los detalles formales de 
su idea, una forma natural de entenderla es como un rechazo (o 
restricción) de Pareto Débil (Sen 1996, p. 156). Una propuesta 
similar fue desarrollada por Saari (1997, p. 92): su nuevo princi-
pio, “Pareto Relajado”, propone que Pareto Débil se aplique en-
tre opciones (a, b) que no pertenecen a ninguna esfera de dere-
chos individual.  
Otros autores proponen restringir el principio aquí llamado “Li-
beralismo”. Por ejemplo, Gibbard (1974) intenta formalizar la 
idea intuitiva de que las personas pueden decidir sobre su esfera 
privada cuando no entra en conflicto con la esfera privada de los 
demás. Esto requiere especificar en qué casos un derecho es 
“abandonado” por conflictuar con los derechos de otros (los de-
talles formales exceden la complejidad de este libro). Muchos 
autores han seguido esta tendencia, al intentan formalizar el con-
cepto de “derecho” para el marco de la elección social.  
 
Ejercicios 
 
1. 
Gibbard (1974) presentó una paradoja similar a la de Sen, pero 
sin usar Pareto Débil.  
Alberto y Carolina (Agente 1 y 2) tienen una cita, y cada uno 
pide una copa, de vino tinto (T) o blanco (B). El resultado será 
un par; por ejemplo, (T, B) significa que Alberto toma vino tinto 
y Carolina toma vino blanco. Cada uno es decisivo sobre su es-
fera de influencia: Alberto (Agente 1) puede decidir (por ejem-
plo) entre (T, B) y (B, B). El problema es que Alberto quiere 
tomar dos vinos distintos, y Beatriz quiere que ambos tomen el 
mismo. Supongamos que estas fueran sus preferencias: 
Alberto: (B, T) > (T, B) > (T, T) > (B, B) 
Carolina: (T, T) > (B, B) > (B, T) > (T, B) 
¿Qué problema se genera? ¿Cómo lo solucionarías? 
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2. 
Supongamos que los pares sobre los que cada individuo es deci-
sivo no tienen elementos en común. Ahora utilizamos esta regla 
de elección, llamada Dictadura Limitada: 
- Si (x, y) no pertenecen a ninguna esfera privada, el

Agente 1 (dictador) decide sobre (x, y).
- Si x pertenece a alguna esfera privada y z pertenece a la

esfera “pública”, entonces x > z.
- En el orden colectivo, las “esferas privadas” se ordenan

según el número de cada votante (primero va la esfera
del Agente 1, luego del Agente 2, etc.).

- Cada agente decide sobre su esfera privada (a, b).
Muestre que la regla genera un orden (completo y transitivo), y 
satisface Liberalismo y Pareto Relajado. 

Parte H: Resultados positivos sobre el voto 

La paradoja de Condorcet y el Teorema de Arrow son bastante 
pesimistas respecto al voto democrático. Sin embargo, el mismo 
Condorcet, en su Ensayo antes citado, probó su Teorema del Ju-
rado que muestra que, en algunas circunstancias, el voto puede 
funcionar. Este resultado funciona de base para las justificacio-
nes epistémicas de la democracia (Goodin & Spiekermann, 
2019). La idea de las justificaciones epistémicas es que el voto 
democrático nos acerca a la verdad. 
Empecemos por imaginar un grupo de expertos sobre un deter-
minado fenómeno, que deben ponerse de acuerdo sobre p o ¬p. 
Este teorema usa probabilidades: ¿cuál es la probabilidad de que 
el grupo diga lo correcto, si cada uno es bastante confiable? La 
idea de Condorcet es que, si cada individuo es bastante confiable, 
y las personas votan de forma independiente, el grupo será muy 
confiable.  
Es decir, se asumen dos premisas. En primer lugar, que los agen-
tes son bastante competentes en el asunto: 
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(Competencia)  Hay un r > 0.5, tal que para cada 
individuo i del grupo, la confiabilidad de i sobre p es r. 
Es decir, P(i dice p | p) = r. 
 

Nótese que r debe ser igual para todos los agentes. 
También se asume que los agentes tienen un criterio indepen-
diente entre sí:  
 

(Independencia) Para dos agentes i y j, P(i dice p 
| j dice p) = P(i dice p). Es decir, los juicios de los agentes 
son independientes entre sí. 
 

Entonces podemos probar lo siguiente: 
 

(Teorema del jurado de Condorcet) 
Asumiendo Competencia e Independencia, podemos 
probar dos cosas: 
Parte finita: A medida que aumenta el número de agen-
tes (siempre que sea impar), y si votan por mayoría, la 
confiabilidad del grupo irá aumentando (y siempre será 
mayor a r). 
Parte infinita: La confiabilidad del grupo, a medida que 
agregamos agentes, tiende a 1. 
 

Podríamos entender el teorema como una prueba de que la sabi-
duría colectiva siempre supera a la individual: no importa cuán 
confiable sea un agente, un grupo suficientemente grande de 
agentes bastante confiables votando por mayoría lo va a superar. 
La prueba general no es tan sencilla, pero mostraremos el primer 
paso para un caso específico. Supongamos que tenemos un solo 
agente, con confiabilidad 0.6. Ahora agregamos dos agentes con 
confiabilidad 0.6. ¿Cuál es la probabilidad de que, votando por 
mayoría, den con la opción correcta? 
Supongamos que sucede p. Ahora hay dos formas de ganar: 

 
A. Los tres agentes votan p. 
B. Dos agentes votan p, y un tercer agente vota ¬p. Esto puede 
pasar de tres formas distintas. 
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La probabilidad de A es 0.63 = 0.216. 
La probabilidad de B es 3 × [0.6 × 0.6 × 0.4] = 3 × 0.144 = 0.432. 
Entonces la probabilidad de que pase A o B es 0.216 + 0.432 = 
0.648. Es decir, es mayor que 0.6. 
 
Para mostrar este resultado es muy común usar simulaciones. Por 
ejemplo, en esta simulación podemos ver que si la confiabilidad 
de los agentes es 0.6, mientras más agentes haya, más confiable 
será el grupo: 

 
 
Como antes señalé, el Teorema del Jurado de Condorcet se usó 
muchas veces, especialmente en los últimos años, para justificar 
la democracia desde un punto de vista epistémico (Estlund 2008, 
Goodin & Spiekermann 2019). 
Sin embargo, el teorema tiene algunos puntos cuestionables: 
 

a. Supone que todos los agentes tienen la misma confiabilidad.  
b. Supone la independencia entre opiniones, algo difícil de que 
funcione en realidad. 
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La propiedad (a) es la menos problemática, porque la homoge-
neidad en confiabilidad no es necesaria para el teorema: podría-
mos probar lo mismo (para la versión infinita) si asumimos que 
los agentes tienen en promedio confiabilidad 0.6, ya sea con una 
distribución uniforme o una distribución normal.  
La parte (b) sí es más compleja, porque en el mundo real las opi-
niones están influidas por “agentes centrales” como el Estado y 
los medios de comunicación masivos. Grofman y Feld (1988) 
proponen que el teorema del Jurado de Condorcet representa el 
ideal de Rousseau de la voluntad general. Recordemos que la vo-
luntad general de Rousseau no admite pactos (esto vendría a re-
presentar la Independencia) y está formada de gente moderada-
mente educada (esto vendría a representar la Competencia). 
Hay dos resultados que también suelen utilizarse para cuestionar 
el teorema. En primer lugar, si bien el teorema muestra que un 
grupo suficientemente grande de personas competentes e inde-
pendientes es más confiable que una persona muy competente, 
no es necesario tener millones de personas: con cientos o miles 
es suficiente. Entones, algunos autores usan el resultado para 
cuestionar la democracia (donde votan todos) y defender la epis-
tocracia, donde votan las personas que pueden pasar una prueba 
de conocimiento general (Brennan 2018). Autores como Estlund 
(2008) sugieren que la democracia no puede justificarse solo de 
forma epistémica, sino que también necesita apelar a la univer-
salidad de los derechos políticos. 
Una segunda deriva preocupante del teorema es que, si los agen-
tes son no-confiables (es decir si r < 0.5), entonces la democracia 
los llevará a decisiones equivocadas casi siempre. Es decir, este 
teorema es simétrico, para lo bueno y para lo malo. 
 
Ejercicio 
 
Mostrar que tres agentes con 0.7 de confiabilidad votan mejor 
(por mayoría) que un solo agente con 0.7 de confiabilidad. 
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Parte I: Agregación de juicios 

En esta última sección, discutiremos la teoría de agregación de 
juicios. El problema de la agregación de juicios es similar al pro-
blema de la agregación de preferencias, y por eso se lo suele ver 
como un pariente cercano del problema de la elección social. 
Similar a la paradoja de Condorcet para la teoría de la elección 
social, en la teoría de agregación de juicios existe la Paradoja 
doctrinal (Kornhauser & Sager, 1987).  En este escenario, tres 
jurados deben votar sobre si determinado agente es culpable (r) 
o no (¬r). Todos están de acuerdo en esto: “El acusado es culpa-
ble si y sólo si el acusado cometió el acto, y el acto está castigado
por ley”. Es decir: r ↔ (p & q). Podemos entonces reemplazar r
por (p & q). Los agentes votan del siguiente modo:

Juez 1: p ¬q ¬(p & q) 

Juez 2: ¬p q ¬(p & q) 

Juez 3: p q p & q 

El problema aparece cuando queremos obtener una decisión co-
lectiva a partir de estos votos. Si todas las proposiciones se deci-
den por voto mayoritario, el resultado es {p, q, ¬(p & q)}. Es 
decir, el voto mayoritario arroja un resultado inconsistente, aun 
cuando los votos individuales eran consistentes. Pettit y Rabino-
wicz (2001) llamaron a esta paradoja “dilema discursivo”. 
La teoría de agregación de juicios estudia este tipo de problemas 
de agregación. Podríamos distinguir entre dos tipos de investiga-
ciones, similar a lo que sucede con la teoría de elección social. 
Por un lado, podemos desarrollar resultados nuevos de imposibi-
lidad. Otro enfoque, más constructivo, consiste en proponer mé-
todos de agregación que satisfagan determinadas propiedades. 

Resultados de imposibilidad 
Un resultado de imposibilidad nos sirve para ver de forma más 
general cuáles son los problemas que causan determinada para-
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doja. Así como el Teorema de Arrow puede verse como una ge-
neralización de la Paradoja de Condorcet, varios autores intenta-
ron generalizar el Dilema discursivo probando resultados de im-
posibilidad. El primer resultado fue de List y Pettit (2002); aquí 
vamos a enunciar (sin prueba) un resultado equivalente de Die-
trich y List (2007), que nos ayuda a ver las similitudes entre el 
Dilema discursivo y el Teorema de Arrow. Para entender este 
resultado y sus posibles soluciones hace falta un poco más de 
sofisticación formal. 
En el marco de la teoría de la agregación de juicios, una agenda 
es un conjunto X de proposiciones cerrado bajo negación (para 
simplificar, ignoramos las dobles negaciones). Estas son las pro-
posiciones sobre las cuales votan los agentes. Por ejemplo, una 
agenda podría ser {p, q, ¬p, ¬q, p & q, ¬(p & q)}. 
Por otro lado, un conjunto de juicios es un conjunto J de propo-
siciones de la agenda que acepta determinado agente. Es decir, J 
⊆ X. Se asume que los conjuntos de juicios J son consistentes 
(tienen modelo) y completos (para cada proposición A en la 
agenda, o eligen A o ¬A). Por último, un perfil es una n-tupla de 
conjuntos de juicios, P = (J1, …, Jn). 
Ahora podemos presentar el resultado de imposibilidad: 

 
Resultado de imposibilidad (Dietrich & List 2007, 
Teorema 2): Si la agenda tiene dos letras proposicionales 
y alguna composición (p & q, p ∨ q, etc.), entonces cual-
quier regla de agregación f que satisface estas condicio-
nes es una Dictadura: 
 
- Dominio universal: El dominio de f es el conjunto de 
todos los perfiles de juicios completos y consistentes so-
bre la agenda X. 
- Racionalidad colectiva: Siempre el resultado f(P) es un 
conjunto de juicio (es decir, es consistente y completo). 
- Unanimidad: Si todos los individuos de un perfil P 
aceptan A, entonces A ∊ f(P). 



 
Diego Tajer /175 

 

- Independencia: Si una proposición A es aceptada por 
los mismos agentes en distintos perfiles P y P’ respecti-
vamente, entonces A ∊ f(P) si y solo si A ∊ f(P’). 

 
De este modo, podemos ver el paralelo entre este teorema de im-
posibilidad para la agregación de juicios y el teorema de imposi-
bilidad de Arrow. 
 
Soluciones: Rechazar Independencia 
Similar a lo que sucede con el Teorema de Arrow, la respuesta 
más natural al problema de la agregación de juicios es rechazar 
la Independencia. La idea es que el voto colectivo sobre una pro-
posición no debería depender solamente de los votos individua-
les sobre esa misma proposición.  
Por ejemplo, el voto sobre una conclusión podría depender de las 
razones a favor de ella. Ese es el espíritu de la Regla de Premisas, 
que explicaremos a continuación. 
En una versión sencilla de la Regla de Premisas, los agentes vo-
tan por mayoría sobre las fórmulas atómicas, y los votos sobre 
las fórmulas compuestas se derivan de ahí. Entonces el voto se 
decidiría de este modo, manteniendo la consistencia: 
 

Juez 1:   p  ¬q  ¬(p & q) 

Juez 2:   ¬p  q  ¬(p & q) 

Juez 3:   p  q  p & q 

Premisas:  p  q  p & q 
 
Es fácil ver por qué este método no satisface Independencia. Su-
pongamos que el Juez 2, buscando manipular el resultado sobre 
(p & q), decidiera rechazar q. Ahora, la regla de mayoría arrojaría 
¬q, y la Regla de Premisas nos daría ¬(p & q). Pero esto viola 
Independencia: en este nuevo perfil los votos individuales sobre 
(p & q) son iguales a los del perfil anterior, pero el voto colectivo 
sobre esta proposición será distinto.  
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Hay muchas otras reglas que violan la condición de Independen-
cia, como las reglas secuenciales y reglas de distancia. Por razo-
nes de espacio, no indagaremos esas opciones aquí. 

Soluciones: Restricciones de dominio 
Otra posibilidad, similar a lo que ocurre en el Teorema de Arrow, 
es restringir el dominio a aquellos perfiles que tienen alguna pro-
piedad deseable. Aquí no usaremos la propiedad de “pico único” 
sino algo equivalente. Decimos que un grupo está uniformemente 
alineado respecto a una agenda X, cuando podemos ordenar a los 
agentes de modo tal que, para cada proposición p de la agenda 
X, los agentes que aceptan la proposición están todos a la derecha 
(o todos a la izquierda) de los que la rechazan.
Por ejemplo, supongamos que fueran proposiciones sobre el
aborto, y los votantes van de la ultra-izquierda (UI) a la ultra-
derecha (UD):

    UI      I       C      D     UD 
p = El feto es persona     0    0     1    1    1 
q = Mujeres tienen derecho a abortar.   1    1     1    0    0 
r = Estado debe financiar a la Iglesia           0    0       0       1       1 

De este modo, p tiene 3 votos, q tiene 3, y r tiene 2. Es decir, el 
grupo por mayoría va a decidir {p, q, ¬r}. 
Es curioso que el voto mayoritario coincide con lo que vota el 
agente C. Un resultado muy sencillo nos muestra que en tanto el 
grupo está uniformemente alineado, podemos aplicar el voto por 
mayoría, y va a coincidir con el votante medio (esto usualmente 
se llama “Teorema del Votante Medio”). Esto garantiza la con-
sistencia, dado que todos los votantes son individualmente con-
sistentes. Este resultado destaca la solidez de los sistemas políti-
cos con lineamientos claros entre izquierda y derecha. Y, si cree-
mos que la deliberación favorece estos alineamientos, también 
habla a favor del método deliberativo.  
Dryzek y List (2003) usan este resultado para reconciliar la tra-
dición deliberativa con los resultados en agregación de juicios. 
Ellos proponen que la deliberación ayuda en dos aspectos. Por 
un lado, luego de discutir, un grupo suele tener posiciones más 
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homogéneas. Por otro lado, luego de la deliberación, los inte-
grantes del grupo se alinean más, permitiendo luego aplicar mé-
todos de agregación razonables. Es decir, la deliberación ayuda 
a estructurar a los votantes y homogeneizar los grupos bajo ejes 
socialmente reconocidos, tales como “derecha” e “izquierda”. 
 
Ejercicio 
 
1. 
En el ejemplo de la paradoja discursiva con (p & q), el tercer 
agente acepta esta proposición. Elabore un ejemplo de Paradoja 
Discursiva donde ningún agente acepte la “conclusión”. 
 
2. 
Supongamos que se usa una regla de Dictadura Condicional: si 
el voto por mayoría genera un resultado inconsistente, el Juez 3 
se transforma en un dictador e impone su perfil. Esta regla satis-
face Unanimidad y evita inconsistencias. Mostrar que viola In-
dependencia. 
 
Soluciones para el capítulo 4 
 
PARTE A 
1. 
El orden resultante es b > a > c. 
 
2. 
El problema del método de Lull es que el ganador dependerá del 
orden de las votaciones. Por ejemplo, en el caso del perfil para-
dójico de Condorcet, si empezamos votando (a, b) ganará c, y si 
empezamos votando (a, c), ganará b. 
 
PARTE C 
El método de Dictadura satisface Pareto Débil e Independencia 
de Alternativas, además de ser completo y transitivo. 
Supongamos que el dictador es i. 
Pareto Débil: Si todos los agentes votan a > b, entonces el agente 
i también vota a > b, entonces el grupo decide a > b. 
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Independencia de Alternativas: Sea P un perfil tal que a > b en 
f(P). Dado que f es una dictadura, el agente i prefiere a > b en P. 
Sea P’ un perfil donde se mantienen las preferencias sobre a > b, 
pero cambian preferencias sobre otras alternativas. Esto significa 
que el dictador i aun prefiere a > b. Entonces a > b en f(P’). 
Completitud y Transitividad: Dado que el ranking individual del 
dictador i debe ser completo y transitivo, el ranking colectivo 
también lo será. 
 
PARTE D 
1. 
Supongamos que i es decisivo sobre a > b, j es decisivo sobre b 
> c, y k es decisivo sobre c > a. Sea P un perfil donde i prefiere 
a > b, j prefiere b > c y k prefiere c > a. Por la definición de 
“decisivo”, la preferencia colectiva será paradójica: a > b, b > c, 
pero c > a. 
 
2. 
Supongamos que i es decisivo sobre a > b, y j es decisivo sobre 
b > c. Supongamos que aplica la propiedad de Pareto Débil. Sea 
P un perfil donde i prefiere a > b y j prefiere b > c, y todos los 
agentes prefieren c > a. Por Pareto Débil y definición de “deci-
sivo”, la preferencia colectiva será paradójica. 
 
PARTE F 
1. 
El resultado de Borda es b > c > a > d, con 9, 8, 7 y 6 votos res-
pectivamente. 
 
2. 
Como forma de manipulación, el agente 3 podría mover c hacia 
arriba y b hacia abajo. Así ganaría c con 9 puntos. 
 
2. 
Completitud: si (x, y) pertenecen al mismo bloque, xRy si y sólo 
si xRiy, donde i es el dictador del orden interno de los bloques. 
En cambio, si pertenecen a distintos bloques, xRy si y sólo si xRjy, 
donde j es el dictador sobre bloques distintos. 
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Pareto Débil: Si x > y para todos los agentes, esto significa que x 
> y para ambos semi-dictadores, entonces en el orden colectivo
x > y.

3. 
Supongamos que x ≥ y y y ≥ z. 
Supongamos que (x, y, z) pertenecen al mismo bloque. Entonces 
se ordenan como disponga el semi-dictador del orden interno de 
los bloques, cuyo orden de preferencias es transitivo; por lo 
tanto, x ≥ z. 
Supongamos que (x, y, z) pertenecen a bloques distintos. Enton-
ces se ordenan como disponga el semi-dictador de bloques dis-
tintos, cuyo orden de preferencias es transitivo; inferimos x > z. 
Ahora supongamos que (x, y) pertenecen a un bloque, pero z per-
tenece a otro. La preferencia y > z la establece el semi-dictador 
sobre bloques distintos. Entonces también x > z, porque las pre-
ferencias de ese semi-dictador también se establecen en forma de 
bloque. (Lo mismo cuando x es de un bloque y (y, z) de otro) 

PARTE G 
1. 
Se genera un ciclo. Alberto genera que (B, T) > (T, T) y (T, B) > 
(B, B). Y Carolina genera que (T, T) > (T, B) y (B, B) > (B, T). 
Entonces (B, T) > (T, T) > (T, B) > (B, B) > (B, T). 
La explicación de Gibbard (1974) es que nuestras preferencias 
aquí son condicionales: si Alberto toma tinto, Carolina prefiere 
tinto sobre blanco, pero si Alberto toma blanco, Carolina prefiere 
blanco sobre tinto. No podemos ser dictadores sobre nuestra es-
fera privada si nuestras preferencias son condicionales a lo que 
hagan los demás.  

2. 
La satisfacción de Liberalismo es trivial: cada uno decide sobre 
su esfera privada. La regla satisface Pareto Relajado porque el 
dictador decide sobre cada par que no pertenece a ninguna esfera 
privada: entonces cuando todos los agentes prefieren x > y, in-
cluyendo al dictador, se infiere que x > y. 
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Respecto a Completitud, hay tres casos a considerar. Primero, x 
está en una esfera privada, mientras que y es pública. Entonces 
inferimos x > y. Si ambas pertenecen a una esfera privada, decide 
el agente correspondiente. Si ambas pertenecen a la esfera pú-
blica, decide el dictador. Si x es de una esfera privada y y de otra, 
entonces se decide por la numeración de los agentes. 
Transitividad es algo más compleja. Si x ≥ y y y ≥ z, hay varios 
casos a considerar. Si son de tres esferas privadas distintas, en-
tonces se infiere x > z, por la numeración de los agentes. Si (x, y) 
son de una esfera privada y z de otra, entonces y > z también 
implica que x > z. Si x es de una esfera privada y (y, z) de otra, 
entonces el hecho de que x > y implica que x > z. Si (x, y) perte-
necen a una esfera privada y z a la esfera pública, entonces x > z 
(lo mismo si x es privada pero (y, z) son públicas).  
 
PARTE H 
Mostraremos que tres agentes con confiabilidad 0.7 votan mejor 
que uno. 
Si hay tres agentes con confiabilidad 0.7, pueden suceder tres 
cosas para que el voto mayoritario esté en lo correcto: 
Los tres votan bien: 0.73= 0.343. 
Dos votan bien y uno vota mal. 
3 × (0.7 × 0.7 × 0.3) = 0.147 × 3 = 0.441 
Entonces 0.343 + 0.441 = 0.784  
 
PARTE I 
1. Paradoja donde ningún agente acepta la “conclusión”: 
 
   A B C A&B&C 

Agente 1 1 1 0 0 
Agente 2 0 1 1 0 
Agente 3 1 0 1 0 
Mayoría  1 1 1 0 

 
2. La regla de Dictadura Condicional viola Independencia. Su-
pongamos que tenemos este perfil: 
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Juez 1:   ¬p  ¬q  ¬(p & q) 

Juez 2:   ¬p  q  ¬(p & q) 

Juez 3:   p  q  p & q 
 
Este perfil nos arroja {¬p, q, ¬(p & q)} por el voto mayoritario. 
Pero si el Juez 1 cambiara su voto hacia p nos daría lo siguiente 
 

Juez 1:   p  ¬q  ¬(p & q) 

Juez 2:   ¬p  q  ¬(p & q) 

Juez 3:   p  q  p & q 

 
Este es el perfil del Dilema Discursivo. Entonces, siguiendo Dic-
tadura Condicional, debería decidir el Juez 3, y se impondrá {p, 
q, (p & q)}. Esto obviamente viola Independencia porque ambos 
perfiles tienen los mismos votos individuales sobre (p & q), pero 
el resultado del voto colectivo es distinto. 
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EPÍLOGO 

Hemos llegado al final del libro. A lo largo de los diferentes ca-
pítulos, recorrimos conceptos de probabilidad, teoría de la deci-
sión, teoría de juegos y elección social. Espero haber mostrado a 
los lectores (especialmente a aquellos que se enfrentan a estos 
temas por primera vez) que se trata de un campo interesante y 
con múltiples aplicaciones para la filosofía.    
Como resulta obvio, el acercamiento a los temas fue algo gene-
ral, y quedaron muchos conceptos y discusiones importantes sin 
explorar. Algunos temas los excluí porque no me interesan tanto, 
otros por su complejidad matemática y otros porque no son tan 
fundamentales. Me gustaría, sin embargo, recomendar a los lec-
tores algunos temas para seguir investigando en el área, que no 
pude recoger en este libro. 
Respecto al capítulo 1, algunos temas para explorar que no vimos 
en el libro son: las condicionalizaciones alternativas como el mé-
todo de Jeffrey (1992), la teoría de la confirmación bayesiana en 
ciencia empírica (Earman 1992), y obviamente un análisis más 
profundo de la filosofía de la probabilidad (Rowbottom 2015). 
Respecto al capítulo 2, muchos filósofos se han interesado por la 
paradoja de Newcomb y temas similares como la teoría de la de-
cisión causal (Weirich 2008). También es interesante explorar 
más relaciones entre decisión y psicología, como el efecto del 
“framing” (Bermúdez 2008). Otro tema que interesa a los filóso-
fos son las posibles violaciones de axiomas de la preferencia, 
como la transitividad (Andreou 2022). 
Respecto al capítulo 3, hay muchos temas relacionados con la 
teoría de juegos que quedaron afuera del libro, por motivos de 
espacio o dificultad. Esto incluye la selección de equilibrios 
(Harsanyi & Selten 1988), los métodos de negociación (Van-
derschraaf 2023), y los métodos de división justa de bienes 
(Brams & Taylor 2011). 
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Finalmente, respecto al capítulo 4, quedaron sin explorar los en-
foques más cardinales, como el utilitarismo de Harsanyi (1955), 
y también otros teoremas fundamentales, como el de Gibbard-
Satterthwaite; recomiendo el libro de Gaertner (2006) a los que 
quieran profundizar en el tema. Respecto a la agregación de jui-
cios, existe también una interesante discusión sobre cómo llegar 
a acuerdos a partir de opiniones probabilísticas (Elkin & Petti-
grew 2025).  
Un tema en el que no enfaticé, pero me parece de mucho interés, 
es la historia intelectual de los temas tratados en el libro. Por 
ejemplo, de qué modo autores como Arrow, Ellsberg o Schelling 
participaron en la construcción de la hegemonía militar norte-
americana (Erickson 2015). Esto conlleva también una discusión 
ética sobre el valor de las contribuciones intelectuales más allá 
de su función original. 
Por último, no profundicé en los métodos de simulaciones en fi-
losofía, que a partir de la contribución de autores como Axelrod 
y Skyrms, se volvieron una práctica usual. Recomiendo a los lec-
tores prestar atención a esta área de investigación y sus recientes 
exploraciones sobre la desinformación (O’Connor & Weatherall 
2019) y el origen de las normas sociales (O’Connor 2019).  
 
Espero que los lectores hayan disfrutado tanto la lectura de este 
libro como yo disfruté de su escritura.  
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